types <- sapply(cal.track.obj, "[[", "type")
val.shape <- map(cal.track.obj, function(x) {
c(length(x$new.val), class(x$new.val))
}
)
w.single <- which(sapply(val.shape, function(x) x[1] == 1))
Focal Parameters
All single values
sing.focal <- intersect(which(types == "focal"), w.single)
c.df <- map(cal.track.obj[sing.focal], function(x) do.call(data.frame, x))
all.df <- do.call(bind_rows, c.df) %>% select(-type) %>%
mutate(difference = new.val - old.val,
p.diff = round(100 * difference / new.val, 2))
gt::gt(all.df) %>%
gt::tab_header("Single value, focal calibrated parameters") %>%
gt::cols_label(
name = "Parameter", old.val = "Old Value",
new.val = "New Value", difference = "Absolute Difference",
p.diff = "Percent Difference"
) %>% gt::fmt_number(columns = 2:ncol(all.df),
n_sigfig = 3, drop_trailing_zeros = TRUE)
| Parameter |
Old Value |
New Value |
Absolute Difference |
Percent Difference |
| prep.reinit.wk$snap2 |
0.00557 |
0.00151 |
−0.00406 |
−270 |
sml_temp <- paste0(c("\n\n", rep("#", 2), " %s ", "
", "
"), collapse = "")
mult.focal <- intersect(which(types == "focal"),
setdiff(seq(cal.track.obj), w.single))
for (mk.idx in seq_along(mult.focal)) {
p.indx <- mult.focal[mk.idx]
obj.name <- names(cal.track.obj)[p.indx]
cat(sprintf(sml_temp, obj.name))
obj.info <- val.shape[[obj.name]]
if (any(obj.info[-1] == "data.frame")) {
sub.calib.obj <- cal.track.obj[[p.indx]]
old.df <- sub.calib.obj$old.val
new.df <- sub.calib.obj$new.val
if (!is.data.frame(old.df)) {
head(new.df) %>% knitr::kable() %>% print()
} else{
matching.vec <- map2(old.df, new.df, function(x, y) {
all(x == y)
}) %>% flatten_lgl()
which.no.match <- which(!matching.vec)
colnames(old.df)[which.no.match] <-
paste0(colnames(old.df)[which.no.match], ".old")
colnames(new.df)[which.no.match] <-
paste0(colnames(new.df)[which.no.match], ".new")
new.df <- left_join(old.df, new.df, by = colnames(old.df)[matching.vec])
new.and.old <- grep("\\.old|\\.new", colnames(new.df))
head(new.df) %>% knitr::kable() %>%
# kableExtra::column_spec(new.and.old, background = "#BEBEBE",
# bold = T) %>%
print()
}
}
cat("\n\n")
}
prep.newrx.wk.dt
| 1 |
O |
King |
0 |
11.41989 |
0.0003667 |
0.0000080 |
0.0000080 |
0.0000032 |
| 1 |
O |
King |
1 |
14.02013 |
0.0046033 |
0.0000821 |
0.0000825 |
0.0000330 |
| 1 |
O |
King |
2 |
17.21242 |
0.0336597 |
0.0004889 |
0.0005059 |
0.0002024 |
| 1 |
O |
King |
3 |
21.13157 |
0.1354994 |
0.0016030 |
0.0018543 |
0.0007417 |
| 1 |
O |
King |
4 |
25.94309 |
0.2964467 |
0.0028567 |
0.0040604 |
0.0016242 |
| 1 |
O |
King |
5 |
31.85017 |
0.4035996 |
0.0031680 |
0.0053118 |
0.0021247 |
Set Parameters
All single values
sing.set <- intersect(which(types == "set"), w.single)
c.df <- map(cal.track.obj[sing.set], function(x) do.call(data.frame, x))
all.df <- do.call(bind_rows, c.df) %>% select(-type) %>%
mutate(difference = new.val - old.val,
p.diff = round(100 * difference / new.val, 2))
gt::gt(all.df) %>%
gt::tab_header("Single value, set calibrated parameters") %>%
gt::cols_label(
name = "Parameter", old.val = "Old Value",
new.val = "New Value", difference = "Absolute Difference",
p.diff = "Percent Difference"
) %>% gt::fmt_number(2:ncol(all.df), drop_trailing_zeros = TRUE,
n_sigfig = 4)
| Parameter |
Old Value |
New Value |
Absolute Difference |
Percent Difference |
| jnt_prev_targ_yr |
2,011 |
1,990 |
−21.00 |
−1.060 |
| UIAI.prob |
0.007763 |
0.004436 |
−0.003327 |
−75.00 |
| URAI.prob |
0.009044 |
0.005168 |
−0.003876 |
−75.00 |
| pre_targ_mult |
1.300 |
1.300 |
0 |
0 |
| rr_tx_init_adap |
NA |
0.1946 |
NA |
NA |
| rr_tx_halt_adap |
NA |
0.2678 |
NA |
NA |
| rr_tx_reinit_adap |
NA |
1.007 |
NA |
NA |
| pdap$pdap.frac |
0.06095 |
0.005000 |
−0.05595 |
−1,119 |
Other
adap_apply_param
| NA |
0.8324995 |
| NA |
0.8324995 |
| NA |
0.8324995 |