Pruebas de Normalidad
#carga de datos
library(wooldridge)
data(hprice1)
head(force(hprice1),n=5) #mostrar las primeras 5 observaciones
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
library(stargazer)
estimacion_modelo<-lm(formula = price~lotsize+sqrft+bdrms,data = hprice1)
stargazer(estimacion_modelo,title = "estimación del modelo",type = "text")
##
## estimación del modelo
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## lotsize 0.002***
## (0.001)
##
## sqrft 0.123***
## (0.013)
##
## bdrms 13.853
## (9.010)
##
## Constant -21.770
## (29.475)
##
## -----------------------------------------------
## Observations 88
## R2 0.672
## Adjusted R2 0.661
## Residual Std. Error 59.833 (df = 84)
## F Statistic 57.460*** (df = 3; 84)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
library(fitdistrplus)
ajuste_normal<-fitdist(data = estimacion_modelo$residuals, distr = 'norm')
plot(ajuste_normal)
summary(ajuste_normal)
## Fitting of the distribution ' norm ' by maximum likelihood
## Parameters :
## estimate Std. Error
## mean 9.992007e-16 6.231624
## sd 5.845781e+01 4.406424
## Loglikelihood: -482.8775 AIC: 969.7549 BIC: 974.7096
## Correlation matrix:
## mean sd
## mean 1 0
## sd 0 1
1.Prueba de Normalidad de Jarque - Bera
library(normtest)
jb.norm.test(estimacion_modelo$residuals)
##
## Jarque-Bera test for normality
##
## data: estimacion_modelo$residuals
## JB = 32.278, p-value < 2.2e-16
#Jarque-Bera con fastGraph
##Jarque-Bera con fastGraph
library(fastGraph)
library(psych)
options(scipen = 9)
mat_2<-model.matrix(estimacion_modelo)
Grafica_JB<-cortest.bartlett(mat_2[,-1])
print(Grafica_JB)
## $chisq
## [1] 31.38122
##
## $p.value
## [1] 0.0000007065806
##
## $df
## [1] 3
VC_JB<-qchisq(0.95,Grafica_JB$df)
print(VC_JB)
## [1] 7.814728
shadeDist(Grafica_JB$chisq,ddist = "dchisq",parm1 = Grafica_JB$df,lower.tail = FALSE,sub=paste("vc:",VC_JB,"FG:",Grafica_JB$chisq))
2.Prueba de Normalidad de Kolmogorov - Smirnov
library(nortest)
lillie.test((estimacion_modelo$residuals))
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: (estimacion_modelo$residuals)
## D = 0.075439, p-value = 0.2496
3.Prueba de Normalidad de Shapiro - Wilk
shapiro.test(estimacion_modelo$residuals)
##
## Shapiro-Wilk normality test
##
## data: estimacion_modelo$residuals
## W = 0.94132, p-value = 0.0005937
##Shapiro-Wilk con fastGraph
##Shapiro-Wilk con fastGraph
shapiro.test(estimacion_modelo$residuals)
##
## Shapiro-Wilk normality test
##
## data: estimacion_modelo$residuals
## W = 0.94132, p-value = 0.0005937
qqnorm(estimacion_modelo$residuals)
qqline(estimacion_modelo$residuals)
library(fastGraph)
shadeDist(0.94132,parm1 = 0,ddist ="dnorm",lower.tail = F)