#¿Como funciona fastGraph?
Presente unas pequeñas instrucciones para graficar un valor crítico y un “p-value” para las distribuciones Z,T, F, chi^2 y algunos ejemplos gráficos.
#Cargado datos
options(scipen = 999999)
library(wooldridge)
data(hprice1)
head(force(hprice1), n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
#Estimando modelo
options(scipen = 999999)
library(stargazer)
modelo_inves<-lm(formula = price~bdrms+lotsize,data = hprice1)
stargazer(modelo_inves,title = "Modelo de investigacion",type = "text",digits = 6)
##
## Modelo de investigacion
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## bdrms 57.312850***
## (10.884530)
##
## lotsize 0.002858***
## (0.000900)
##
## Constant 63.262240
## (39.619570)
##
## -----------------------------------------------
## Observations 88
## R2 0.336817
## Adjusted R2 0.321213
## Residual Std. Error 84.624130 (df = 85)
## F Statistic 21.584860*** (df = 2; 85)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
#Graficando distribucion Z
options(scipen = 999999)
library(fastGraph)
shadeDist(qnorm(0.95), "dnorm", 0, 1, col = c("black","red"))
shadeDist(qnorm(0.95), lower.tail=FALSE, col = c("black","red"))
#Graficando dstribucion T
options(scipen = 999999)
library(fastGraph)
coeficientes<-summary(modelo_inves)$coefficients
valor_t<-coeficientes[,"t value"]
nombres<-names(valor_t)
for(t in 2:3)
{t_critico<-valor_t[t]
#oteniendo valores criticos
print(confint(modelo_inves, parm = t,level = 0.90))
#graficar valor t
t_valor_critico<- shadeDist( c(-t_critico, t_critico ), "dt", 13,col=c("black","red"),sub=paste("valor t:",nombres[t]))}
## 5 % 95 %
## bdrms 39.21212 75.41358
## 5 % 95 %
## lotsize 0.001361347 0.004355174
#Graficando distribucion F
options(scipen = 999999)
F_Anova<-summary(modelo_inves)$fstatistic[1]
gl_num<-summary(modelo_inves)$fstatistic[2]
gl_deno<-summary(modelo_inves)$fstatistic[3]
f_critico<-qf(0.90,gl_num,gl_deno,lower.tail = TRUE)
#graficando valor F
shadeDist(xshade =F_Anova,"df",gl_num,gl_deno,lower.tail = FALSE,col=c("black","red"), sub=paste("valor critico",f_critico,"F critico",F_Anova))
options(scipen = 999999)
library(fastGraph)
shadeDist(qchisq(0.1,25,lower.tail = FALSE),ddist = 'dchisq',parm1 = 25,lower.tail = FALSE, col=c("black","red"))
shadeDist(23,ddist = 'dchisq',parm1 = 25,lower.tail = FALSE,col=c("black","red"),sub=paste(c(qchisq(0.1,25,lower.tail = FALSE))))