library(wooldridge)
data("hprice1")
# Mostrar las primeras 5 observaciones
head(hprice1,n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
library(stargazer)
modelo_estimado<- lm(formula = price~lotsize+sqrft+bdrms, data = hprice1)
stargazer(modelo_estimado,title = 'modelo estimado', type = 'html')
| Dependent variable: | |
| price | |
| lotsize | 0.002*** |
| (0.001) | |
| sqrft | 0.123*** |
| (0.013) | |
| bdrms | 13.853 |
| (9.010) | |
| Constant | -21.770 |
| (29.475) | |
| Observations | 88 |
| R2 | 0.672 |
| Adjusted R2 | 0.661 |
| Residual Std. Error | 59.833 (df = 84) |
| F Statistic | 57.460*** (df = 3; 84) |
| Note: | p<0.1; p<0.05; p<0.01 |
##2. Verificación de autocorrelación en los residuos
##a) Prueba de Durbin Watson
library(lmtest)
dwtest(modelo_estimado,alternative = "two.sided", iterations = 1000)
##
## Durbin-Watson test
##
## data: modelo_estimado
## DW = 2.1098, p-value = 0.6218
## alternative hypothesis: true autocorrelation is not 0
library(lmtest)
bgtest(modelo_estimado,order = 1)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: modelo_estimado
## LM test = 0.39362, df = 1, p-value = 0.5304
Como el p value es mayor que 0.05 no se rechaza Ho, por lo tanto puede concluirse que los residuos no siguen autocorrelación de orden 1
library(lmtest)
bgtest(modelo_estimado,order = 2)
##
## Breusch-Godfrey test for serial correlation of order up to 2
##
## data: modelo_estimado
## LM test = 3.0334, df = 2, p-value = 0.2194
Como el p value es mayor que 0.05 no se rechaza Ho, por lo tanto puede concluirse que los residuos no siguen autocorrelación de orden 2