#Cargando datos
options(scipen = 999999)
library(wooldridge)
data(hprice1)
head(force(hprice1), n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
#Estimando el modelo
options(scipen = 999999)
library(stargazer)
modelo_hprice<-lm(formula = price~lotsize+sqrft+bdrms,data = hprice1)
stargazer(modelo_hprice,tittle="modelo estimado",type="text")
##
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## lotsize 0.002***
## (0.001)
##
## sqrft 0.123***
## (0.013)
##
## bdrms 13.853
## (9.010)
##
## Constant -21.770
## (29.475)
##
## -----------------------------------------------
## Observations 88
## R2 0.672
## Adjusted R2 0.661
## Residual Std. Error 59.833 (df = 84)
## F Statistic 57.460*** (df = 3; 84)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
##
## ===============
## modelo estimado
## ---------------
#Prueba white
options(scipen = 999999)
library(lmtest)
w_test<-prueba_white<-bptest(modelo_hprice,~I(lotsize^2)+I(sqrft^2)+
I(bdrms^2)+lotsize*sqrft*bdrms,data = hprice1)
print(prueba_white)
##
## studentized Breusch-Pagan test
##
## data: modelo_hprice
## BP = 33.803, df = 10, p-value = 0.0001995
library(fastGraph)
mat_x<-model.matrix(modelo_hprice)
m<-ncol(mat_x[,-1])
gl<-m*(m-1)/2
w_vc<-qchisq(p= 0.95, df=gl)
shadeDist(xshade = w_test$statistic,ddist = "dchisq",parm1 =gl,lower.tail = FALSE,sub=paste("vc",w_vc,"W",w_test$statistic ))