library(wooldridge)
data(hprice1)
head(force(hprice1),n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
library(stargazer)
options(scipen = 999999)
modelo_hprice1<-lm(formula = price~bdrms+lotsize+sqrft,data = hprice1)
stargazer(modelo_hprice1,title = "Modelo hprice1",type = "text",digits = 8)
##
## Modelo hprice1
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## bdrms 13.85252000
## (9.01014500)
##
## lotsize 0.00206771***
## (0.00064213)
##
## sqrft 0.12277820***
## (0.01323741)
##
## Constant -21.77031000
## (29.47504000)
##
## -----------------------------------------------
## Observations 88
## R2 0.67236220
## Adjusted R2 0.66066090
## Residual Std. Error 59.83348000 (df = 84)
## F Statistic 57.46023000*** (df = 3; 84)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
#Calcular matriz X'X
library(stargazer)
X_mat<-model.matrix(modelo_hprice1)
stargazer(head(X_mat,n=6),type= "text")
##
## =================================
## (Intercept) bdrms lotsize sqrft
## ---------------------------------
## 1 1 4 6,126 2,438
## 2 1 3 9,903 2,076
## 3 1 3 5,200 1,374
## 4 1 3 4,600 1,448
## 5 1 4 6,095 2,514
## 6 1 5 8,566 2,754
## ---------------------------------
XX_matrix<-t(X_mat)%*%X_mat
stargazer(XX_matrix,type = "text")
##
## ==============================================================
## (Intercept) bdrms lotsize sqrft
## --------------------------------------------------------------
## (Intercept) 88 314 793,748 177,205
## bdrms 314 1,182 2,933,767 654,755
## lotsize 793,748 2,933,767 16,165,159,010 1,692,290,257
## sqrft 177,205 654,755 1,692,290,257 385,820,561
## --------------------------------------------------------------
#Cálculo de la matriz de normalizacion
library(stargazer)
options(scipen = 999)
Sn<-solve(diag(sqrt(diag(XX_matrix))))
stargazer(Sn,type = "text")
##
## ==========================
## 0.107 0 0 0
## 0 0.029 0 0
## 0 0 0.00001 0
## 0 0 0 0.0001
## --------------------------
#X'X Normalizada
library(stargazer)
XX_norm<-(Sn%*%XX_matrix)%*%Sn
stargazer(XX_norm,type = "text",digits = 4)
##
## ===========================
## 1 0.9736 0.6655 0.9617
## 0.9736 1 0.6712 0.9696
## 0.6655 0.6712 1 0.6776
## 0.9617 0.9696 0.6776 1
## ---------------------------
#Autovalores de X'X Normalizada
library(stargazer)
#autovalores
lambdas<-eigen(XX_norm,symmetric = TRUE)
stargazer(lambdas$values,type = "text")
##
## =======================
## 3.482 0.455 0.039 0.025
## -----------------------
K<-sqrt(max(lambdas$values)/min(lambdas$values))
print(K)
## [1] 11.86778
INTERPRETACIÓN: El indice de condición es inferior a 20, por tanto,se puede evidenciar que el modelo adolece de multicolinealidad leve, lo cual no representa un problema.
library(mctest)
eigprop(mod = modelo_hprice1)
##
## Call:
## eigprop(mod = modelo_hprice1)
##
## Eigenvalues CI (Intercept) bdrms lotsize sqrft
## 1 3.4816 1.0000 0.0037 0.0029 0.0278 0.0042
## 2 0.4552 2.7656 0.0068 0.0051 0.9671 0.0061
## 3 0.0385 9.5082 0.4726 0.0169 0.0051 0.8161
## 4 0.0247 11.8678 0.5170 0.9750 0.0000 0.1737
##
## ===============================
## Row 4==> bdrms, proportion 0.975026 >= 0.50
## Row 2==> lotsize, proportion 0.967080 >= 0.50
## Row 3==> sqrft, proportion 0.816079 >= 0.50
#Normalizar la matriz X
library(stargazer)
Zn<-scale(X_mat[,-1])
stargazer(head(Zn,n=6),type = "text")
##
## =======================
## bdrms lotsize sqrft
## -----------------------
## 1 0.513 -0.284 0.735
## 2 -0.675 0.087 0.108
## 3 -0.675 -0.375 -1.108
## 4 -0.675 -0.434 -0.980
## 5 0.513 -0.287 0.867
## 6 1.702 -0.045 1.283
## -----------------------
library(stargazer)
n<-nrow(Zn)
R<-(t(Zn)%*%Zn)*(1/(n-1))
#También se puede calcular R a través de cor(X_mat[,-1])
stargazer(R,type = "text",digits = 4)
##
## =============================
## bdrms lotsize sqrft
## -----------------------------
## bdrms 1 0.1363 0.5315
## lotsize 0.1363 1 0.1838
## sqrft 0.5315 0.1838 1
## -----------------------------
determinante_R<-det(R)
print(determinante_R)
## [1] 0.6917931
m<-ncol(X_mat[,-1])
n<-nrow(X_mat[,-1])
chi_FG<--(n-1-(2*m+5)/6)*log(determinante_R)
print(chi_FG)
## [1] 31.38122
gl<-m*(m-1)/2
VC<-qchisq(p = 0.95,df = gl)
print(VC)
## [1] 7.814728
INTERPRETACIÓN: Como χ^2FG≥V.C. se rechaza H0, por lo tanto hay evidencia de colinealidad en los regresores
library(psych)
FG_test<-cortest.bartlett(X_mat[,-1])
print(FG_test)
## $chisq
## [1] 31.38122
##
## $p.value
## [1] 0.0000007065806
##
## $df
## [1] 3
library(fastGraph)
shadeDist(xshade = FG_test$chisq, ddist = "dchisq", parm1 = FG_test$df,
lower.tail = FALSE, sub = paste("VC:", VC, "FG:", FG_test$chisq))
#Matriz de Correlación de los regresores del modelo
print(R)
## bdrms lotsize sqrft
## bdrms 1.0000000 0.1363256 0.5314736
## lotsize 0.1363256 1.0000000 0.1838422
## sqrft 0.5314736 0.1838422 1.0000000
inversa_R<-solve(R)
print(inversa_R)
## bdrms lotsize sqrft
## bdrms 1.39666321 -0.05582352 -0.7320270
## lotsize -0.05582352 1.03721145 -0.1610145
## sqrft -0.73202696 -0.16101454 1.4186543
VIFs<-diag(inversa_R)
print(VIFs)
## bdrms lotsize sqrft
## 1.396663 1.037211 1.418654
library(car)
VIFs_car<-vif(modelo_hprice1)
print(VIFs_car)
## bdrms lotsize sqrft
## 1.396663 1.037211 1.418654
library(mctest)
mc.plot(mod = modelo_hprice1,vif = 2)