library(wooldridge)
library(stargazer)
data(hprice1)
head(force(hprice1),n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
options(scipen = 9999)
library(stargazer)
modelo_autocorrelacion<-lm(formula = price~lotsize+sqrft+bdrms, data = hprice1)
stargazer(modelo_autocorrelacion,title = "Modelo Autocorrelacion", type = "text")
##
## Modelo Autocorrelacion
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## lotsize 0.002***
## (0.001)
##
## sqrft 0.123***
## (0.013)
##
## bdrms 13.853
## (9.010)
##
## Constant -21.770
## (29.475)
##
## -----------------------------------------------
## Observations 88
## R2 0.672
## Adjusted R2 0.661
## Residual Std. Error 59.833 (df = 84)
## F Statistic 57.460*** (df = 3; 84)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
Usando libreria lmtest
library(lmtest)
dwtest(modelo_autocorrelacion,alternative ="two.sided",iterations = 1000)
##
## Durbin-Watson test
##
## data: modelo_autocorrelacion
## DW = 2.1098, p-value = 0.6218
## alternative hypothesis: true autocorrelation is not 0
Usando libreria Car
library(car)
durbinWatsonTest(modelo_autocorrelacion,simulate = TRUE,reps = 1000)
## lag Autocorrelation D-W Statistic p-value
## 1 -0.05900522 2.109796 0.62
## Alternative hypothesis: rho != 0
Al realizar esta prueba con ambas librerias,se puede rechazar la presencia de autocorrelación (No se rechaza la Ho), ya que el p_value>0.05.
library(dplyr)
library(tidyr)
library(kableExtra)
u_i<-modelo_autocorrelacion$residuals
cbind (u_i,hprice1)%>%
as.data.frame() %>%
mutate(Lag_1=dplyr::lag(u_i,1),
Lag_2=dplyr::lag(u_i,2)) %>%
replace_na(list(Lag_1=0,Lag_2=0))->data_prueba_BG
kable(head(data_prueba_BG,6))
u_i | price | assess | bdrms | lotsize | sqrft | colonial | lprice | lassess | llotsize | lsqrft | Lag_1 | Lag_2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
-45.639765 | 300.000 | 349.1 | 4 | 6126 | 2438 | 1 | 5.703783 | 5.855359 | 8.720297 | 7.798934 | 0.000000 | 0.000000 |
74.848732 | 370.000 | 351.5 | 3 | 9903 | 2076 | 1 | 5.913503 | 5.862210 | 9.200593 | 7.638198 | -45.639765 | 0.000000 |
-8.236558 | 191.000 | 217.7 | 3 | 5200 | 1374 | 0 | 5.252274 | 5.383118 | 8.556414 | 7.225481 | 74.848732 | -45.639765 |
-12.081520 | 195.000 | 231.8 | 3 | 4600 | 1448 | 1 | 5.273000 | 5.445875 | 8.433811 | 7.277938 | -8.236558 | 74.848732 |
18.093192 | 373.000 | 319.1 | 4 | 6095 | 2514 | 1 | 5.921578 | 5.765504 | 8.715224 | 7.829630 | -12.081520 | -8.236558 |
62.939597 | 466.275 | 414.5 | 5 | 8566 | 2754 | 1 | 6.144775 | 6.027073 | 9.055556 | 7.920810 | 18.093192 | -12.081520 |
Calculando la regresión auxiliar y el estadistico LMBP
regresion_auxiliar_BG<-lm(u_i~price+lotsize+sqrft+bdrms,data = data_prueba_BG)
sumario_BG<-summary(regresion_auxiliar_BG)
R_2_BG<-sumario_BG$r.squared
n<-nrow(data_prueba_BG)
LM_BG<-n*R_2_BG
gl<-2
p_value<-1-pchisq(q = LM_BG,df = gl)
VC<-qchisq(p = 0.95,df = gl)
salida_bg<-c(LM_BG,VC,p_value)
names(salida_bg)<-c("LMbg","Valor Crítico","p value")
stargazer(salida_bg,title = "Resultados de la prueba de Breusch Godfrey",type = "text",digits = 5)
##
## Resultados de la prueba de Breusch Godfrey
## ==========================
## LMbg Valor Crítico p value
## --------------------------
## 88 5.99146 0
## --------------------------
Usando la librería “lmtest”
library(lmtest)
bgtest(modelo_autocorrelacion,order = 2)
##
## Breusch-Godfrey test for serial correlation of order up to 2
##
## data: modelo_autocorrelacion
## LM test = 3.0334, df = 2, p-value = 0.2194
Como p_value>0.05 No se rechaza Ho, por lo tanto puede concluirse que los residuos del modelo, no siguen autocorrelación de orden “2”
library(lmtest)
bgtest(modelo_autocorrelacion,order = 1)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: modelo_autocorrelacion
## LM test = 0.39362, df = 1, p-value = 0.5304
En este orden, el p-value es mayor que en l autocorrelacion de 2do orden.