library(wooldridge)
library(stargazer)
data(hprice1)
head(force(hprice1),n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
options(scipen = 9999)
library(stargazer)
modelo_price<-lm(formula = price~lotsize+sqrft+bdrms, data = hprice1)
stargazer(modelo_price,title = "Modelo PRICE", type = "text")
Dependent variable:
---------------------------
price
| lotsize 0.002*** (0.001) |
| sqrft 0.123*** (0.013) |
| bdrms 13.853 (9.010) |
| Constant -21.770 (29.475) |
Observations 88
R2 0.672
Adjusted R2 0.661
Residual Std. Error 59.833 (df = 84)
F Statistic 57.460*** (df = 3; 84)
=============================================== Note: p<0.1; p<0.05; p<0.01
library(fitdistrplus)
ajuste_normal_modelo_price<-fitdist(data=modelo_price$residuals,distr="norm")
$start.arg \(start.arg\)mean [1] 0.0000000000000009992007
\(start.arg\)sd [1] 58.45781
$fix.arg NULL
plot(ajuste_normal_modelo_price)
library(normtest)
jb.norm.test(modelo_price$residuals)
##
## Jarque-Bera test for normality
##
## data: modelo_price$residuals
## JB = 32.278, p-value = 0.002
qqnorm(modelo_price$residuals)
qqline(modelo_price$residuals)
hist(modelo_price$residuals,main = "Histograma de los residuos",xlab = "Residuos",ylab = "frecuencia")
library(fastGraph)
library(psych)
options(scipen = 9)
mod_1<-model.matrix(modelo_price)
Grafico_JB<-cortest.bartlett(mod_1[,-1])
print(Grafico_JB)
## $chisq
## [1] 31.38122
##
## $p.value
## [1] 0.0000007065806
##
## $df
## [1] 3
VC_JB<-qchisq(0.95,Grafico_JB$df)
print(VC_JB)
## [1] 7.814728
shadeDist(Grafico_JB$chisq,ddist = "dchisq",parm1 = Grafico_JB$df,lower.tail = FALSE,sub=paste("vc:",VC_JB,"FG:",Grafico_JB$chisq))
library(nortest)
lillie.test(modelo_price$residuals)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: modelo_price$residuals
## D = 0.075439, p-value = 0.2496
qqnorm(modelo_price$residuals)
qqline(modelo_price$residuals)
hist(modelo_price$residuals,main = "Histograma de los residuos",xlab = "Residuos",ylab = "frecuencia")
shapiro.test(modelo_price$residuals)
##
## Shapiro-Wilk normality test
##
## data: modelo_price$residuals
## W = 0.94132, p-value = 0.0005937
shapiro.test(modelo_price$residuals)
##
## Shapiro-Wilk normality test
##
## data: modelo_price$residuals
## W = 0.94132, p-value = 0.0005937
library(fastGraph)
library(psych)
options(scipen = 9)
mod_2<-model.matrix(modelo_price)
Grafico_SW<-cortest.bartlett(mod_2[,-1])
print(Grafico_SW)
## $chisq
## [1] 31.38122
##
## $p.value
## [1] 0.0000007065806
##
## $df
## [1] 3
VC_SW<-qchisq(0.95,Grafico_SW$df)
print(VC_SW)
## [1] 7.814728
shadeDist(xshade = Grafico_SW$chisq,ddist = "dchisq",parm1 = Grafico_SW$df,lower.tail = FALSE,sub=paste("VC:",VC_SW,"FG",Grafico_SW$chisq))