#carga de datos
library(wooldridge)
data(hprice1)
head(force(hprice1),n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
library(stargazer)
modelo_E<-lm(formula = price~lotsize+sqrft+bdrms, data = hprice1)
stargazer(modelo_E, title = 'Estimación del moodelo',type = 'text')
##
## Estimación del moodelo
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## lotsize 0.002***
## (0.001)
##
## sqrft 0.123***
## (0.013)
##
## bdrms 13.853
## (9.010)
##
## Constant -21.770
## (29.475)
##
## -----------------------------------------------
## Observations 88
## R2 0.672
## Adjusted R2 0.661
## Residual Std. Error 59.833 (df = 84)
## F Statistic 57.460*** (df = 3; 84)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
#2. Verifique si hay evidencia de la independencia de los regresores (no colinealidad)
##2.1 calculo de matriz (X’X)
library(stargazer)
matriz_X<-model.matrix(modelo_E)
stargazer(head(matriz_X,n=6),type="text")
##
## =================================
## (Intercept) lotsize sqrft bdrms
## ---------------------------------
## 1 1 6,126 2,438 4
## 2 1 9,903 2,076 3
## 3 1 5,200 1,374 3
## 4 1 4,600 1,448 3
## 5 1 6,095 2,514 4
## 6 1 8,566 2,754 5
## ---------------------------------
matriz_XX<-t(matriz_X)%*%matriz_X
stargazer(matriz_XX,type = "text")
##
## ==============================================================
## (Intercept) lotsize sqrft bdrms
## --------------------------------------------------------------
## (Intercept) 88 793,748 177,205 314
## lotsize 793,748 16,165,159,010 1,692,290,257 2,933,767
## sqrft 177,205 1,692,290,257 385,820,561 654,755
## bdrms 314 2,933,767 654,755 1,182
## --------------------------------------------------------------
##2.2 matriz Sn
library(stargazer)
options(scipen = 999)
Sn<-solve(diag(sqrt(diag(matriz_XX))))
stargazer(Sn,type = "text",title = 'Sn')
##
## Sn
## ==========================
## 0.107 0 0 0
## 0 0.00001 0 0
## 0 0 0.0001 0
## 0 0 0 0.029
## --------------------------
##2.2 matriz (X’X) normalizada
library(stargazer)
nor_XX<-(Sn%*%matriz_XX)%*%Sn
stargazer(nor_XX,type = "text",digits = 4)
##
## ===========================
## 1 0.6655 0.9617 0.9736
## 0.6655 1 0.6776 0.6712
## 0.9617 0.6776 1 0.9696
## 0.9736 0.6712 0.9696 1
## ---------------------------
library(stargazer)
Lambdas<-eigen(nor_XX,symmetric = TRUE)
stargazer(Lambdas$values,type = "text", title = "Lambdas")
##
## Lambdas
## =======================
## 3.482 0.455 0.039 0.025
## -----------------------
K<-sqrt(max(Lambdas$values)/min(Lambdas$values))
print(K)
## [1] 11.86778
El índice de condición es 11.86778 lo que nos dice que la multolinealidad es leve y no se debe considerar un problema.
library(mctest)
eigprop(mod = modelo_E)
##
## Call:
## eigprop(mod = modelo_E)
##
## Eigenvalues CI (Intercept) lotsize sqrft bdrms
## 1 3.4816 1.0000 0.0037 0.0278 0.0042 0.0029
## 2 0.4552 2.7656 0.0068 0.9671 0.0061 0.0051
## 3 0.0385 9.5082 0.4726 0.0051 0.8161 0.0169
## 4 0.0247 11.8678 0.5170 0.0000 0.1737 0.9750
##
## ===============================
## Row 2==> lotsize, proportion 0.967080 >= 0.50
## Row 3==> sqrft, proportion 0.816079 >= 0.50
## Row 4==> bdrms, proportion 0.975026 >= 0.50
m<-ncol(matriz_X[,-1]) # cantidad de variables explicativas k-1
n<-nrow(matriz_X)
determinante_R<- det(cor(matriz_X[,-1])) # determinanre de la matriz de correlacion
chi_FG<--(n-1-(2*m+5)/6)*log(determinante_R)
print(chi_FG)
## [1] 31.38122
## Valor Critico
gl<-m*(m-1)/2
VC<-qchisq(0.05,gl,lower.tail = FALSE)
print(VC)
## [1] 7.814728
#Prueba de Farrar-Glaubar Uso de la libreria psych
library(psych)
library(fastGraph)
FG_test<-cortest.bartlett(matriz_X[,-1])
VC_1<-qchisq(0.05,FG_test$df,lower.tail = FALSE)
print(FG_test)
## $chisq
## [1] 31.38122
##
## $p.value
## [1] 0.0000007065806
##
## $df
## [1] 3
library(fastGraph)
shadeDist(xshade = chi_FG,ddist = "dchisq",parm1 = gl,lower.tail = FALSE,sub=paste("VC:",VC,"FG:",chi_FG))
library(car)
VIFs<-vif(modelo_E)
print(VIFs)
## lotsize sqrft bdrms
## 1.037211 1.418654 1.396663
library(mctest)
mc.plot(modelo_E,vif = 3)