library(wooldridge)
data("hprice1")
head(force(hprice1), n = 5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
#1. estime el siguiente modelo,
price = ˆα + ˆα1(lotsize) + ˆα2(sqrft) + ˆα3(bdrms) + e
modelo_estimado <- lm( formula = price ~ lotsize + sqrft + bdrms, data = hprice1)
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
stargazer(modelo_estimado, title = 'Modelo estimado', type = 'text')
##
## Modelo estimado
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## lotsize 0.002***
## (0.001)
##
## sqrft 0.123***
## (0.013)
##
## bdrms 13.853
## (9.010)
##
## Constant -21.770
## (29.475)
##
## -----------------------------------------------
## Observations 88
## R2 0.672
## Adjusted R2 0.661
## Residual Std. Error 59.833 (df = 84)
## F Statistic 57.460*** (df = 3; 84)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
datos2 <- select(hprice1, price, lotsize, sqrft, bdrms)
modelo_estimado2 <- lm(formula = price ~ lotsize + sqrft + bdrms, data = datos2)
#a) Prueba de Durbin Watson.
library(lmtest)
## Warning: package 'lmtest' was built under R version 4.0.5
## Warning: package 'zoo' was built under R version 4.0.5
dwtest(modelo_estimado2, alternative = "two.side",iterations = 1000 )
##
## Durbin-Watson test
##
## data: modelo_estimado2
## DW = 2.1098, p-value = 0.6218
## alternative hypothesis: true autocorrelation is not 0
#Como p value es mucho mayor que el indice de confiaza. y se concluye que no hay presencia de autocorrelacion de primer orden
#b) Prueba del Multiplicador de Lagrange (verifique autocorrelación de primer y segundo orden). #de primer orden
library(lmtest)
bgtest(modelo_estimado2, order = 1)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: modelo_estimado2
## LM test = 0.39362, df = 1, p-value = 0.5304
# p > indice de confianza. no hay sificiente evidencia de autocorrelacion de primer orden
#de orden superior(orden m)
library(lmtest)
bgtest(modelo_estimado2, order = 2)
##
## Breusch-Godfrey test for serial correlation of order up to 2
##
## data: modelo_estimado2
## LM test = 3.0334, df = 2, p-value = 0.2194
# p > indice de confianza. no hay sificiente evidencia de autocorrelacion de segundo orden