Importacion de datos
library(wooldridge)
data("hprice1")
head(force(hprice1),n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
Estimacion del modelo
modelo_estimado<-lm(formula = price~lotsize+sqrft+bdrms,data = hprice1)
stargazer::stargazer(modelo_estimado, type = "text", title = "Modelo Estimado")
##
## Modelo Estimado
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## lotsize 0.002***
## (0.001)
##
## sqrft 0.123***
## (0.013)
##
## bdrms 13.853
## (9.010)
##
## Constant -21.770
## (29.475)
##
## -----------------------------------------------
## Observations 88
## R2 0.672
## Adjusted R2 0.661
## Residual Std. Error 59.833 (df = 84)
## F Statistic 57.460*** (df = 3; 84)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
Coeficiente de desviacion P value
library(fastGraph)
options(scipen = 999999999)
# Matriz de coeficientes
M_coeficientes<-summary(modelo_estimado)$coefficients
t_valores<-M_coeficientes[, "t value"]
etiquetas<-names(t_valores)
Prueba distribucion Z
library(fastGraph)
shadeDist()

Prueba distribucion t
library(fastGraph)
for (j in 2:4) {
tc<-t_valores[j]
t_vc<-shadeDist(c(tc),"dt",3,col = c("black","blue"),
sub=paste("Parametro de la variable:",etiquetas[j]))
print(confint(modelo_estimado,parm = j,level = 0.95))
}

## 2.5 % 97.5 %
## lotsize 0.000790769 0.003344644

## 2.5 % 97.5 %
## sqrft 0.09645415 0.1491022

## 2.5 % 97.5 %
## bdrms -4.065141 31.77018
Prueba distribubion F
options(scipen = 999999999)
library(fastGraph)
F_anova<-summary(modelo_estimado)$fstatistic[1]
gl_nm<-summary(modelo_estimado)$fstatistic[2]
gl_dn<-summary(modelo_estimado)$fstatistic[3]
F_vc<-qf(0.95,gl_nm,gl_dn,lower.tail = TRUE)
shadeDist(xshade = F_anova,"df",gl_nm,gl_dn,lower.tail = FALSE,col=c("black","blue"), sub=paste("VC:",F_vc," ","Fc:",F_anova))

Valor Critico (Grafica)
library(fastGraph)
shadeDist(qchisq(0.05,88,lower.tail = FALSE),ddist = "dchisq",parm1=88,lower.tail=FALSE)

P value (Grafica)
library(fastGraph)
shadeDist(88,ddist = "dchisq",parm1 = 88,lower.tail = FALSE,col = c("black","purple"),sub=paste(c(qchisq(0.05,88,lower.tail = FALSE))))
