library(wooldridge)
data("hprice1")
head(force(hprice1),n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
modelo_estimado<-lm(formula = price~lotsize+sqrft+bdrms,data = hprice1)
stargazer::stargazer(modelo_estimado,type = "text",title = "Modelo Estimado")
##
## Modelo Estimado
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## lotsize 0.002***
## (0.001)
##
## sqrft 0.123***
## (0.013)
##
## bdrms 13.853
## (9.010)
##
## Constant -21.770
## (29.475)
##
## -----------------------------------------------
## Observations 88
## R2 0.672
## Adjusted R2 0.661
## Residual Std. Error 59.833 (df = 84)
## F Statistic 57.460*** (df = 3; 84)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
library(mctest)
source(file = "D:/DOCUMENTOS EN GENERAL/Econo/Pruebas/correccion_eigprop.R")
my_eigprop(mod = modelo_estimado)
##
## Call:
## my_eigprop(mod = modelo_estimado)
##
## Eigenvalues CI (Intercept) lotsize sqrft bdrms
## 1 3.4816 1.0000 0.0037 0.0278 0.0042 0.0029
## 2 0.4552 2.7656 0.0068 0.9671 0.0061 0.0051
## 3 0.0385 9.5082 0.4726 0.0051 0.8161 0.0169
## 4 0.0247 11.8678 0.5170 0.0000 0.1737 0.9750
##
## ===============================
## Row 2==> lotsize, proportion 0.967080 >= 0.50
## Row 3==> sqrft, proportion 0.816079 >= 0.50
## Row 4==> bdrms, proportion 0.975026 >= 0.50
options(scipen = 999999999)
library(mctest)
mctest(modelo_estimado)
##
## Call:
## omcdiag(mod = mod, Inter = TRUE, detr = detr, red = red, conf = conf,
## theil = theil, cn = cn)
##
##
## Overall Multicollinearity Diagnostics
##
## MC Results detection
## Determinant |X'X|: 0.6918 0
## Farrar Chi-Square: 31.3812 1
## Red Indicator: 0.3341 0
## Sum of Lambda Inverse: 3.8525 0
## Theil's Method: -0.7297 0
## Condition Number: 11.8678 0
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
Xmat<-model.matrix(modelo_estimado)
library(psych)
library(fastGraph)
FG_test<-cortest.bartlett(Xmat[,-1])
vc_2<-qchisq(0.05,FG_test$df,lower.tail = FALSE)
print(FG_test)
$chisq [1] 31.38122
$p.value [1] 0.0000007065806
$df [1] 3
# Prueba FG (forma grafica) utilizando fastGraph
shadeDist(xshade = FG_test$chisq,ddist = "dchisq",parm1 = FG_test$df,lower.tail = FALSE,sub=paste("VC:",vc_2,"FG:",FG_test$chisq))
Hay evidencia estadistica de no rechazar la hipotesis nula ya que el P value es mayor que el nivel de significancia, por lo tanto nuestro modelo presenta evidencia de no Multicolinealidad.
library(car)
VIF_car<-vif(modelo_estimado)
print(VIF_car)
## lotsize sqrft bdrms
## 1.037211 1.418654 1.396663
library(mctest)
mc.plot(modelo_estimado,vif = 2)