Funcionarios <- data.frame(nome = c("Marx", "Weber", "Durkheim","Arendt", "Maquiavel"),
                           sexo = c("M", "M", "M", "F","M"),
                           salario = c(1000, 1200, 1300, 2000, 500),              
                           stringsAsFactors = FALSE)
Funcionarios
##        nome sexo salario
## 1      Marx    M    1000
## 2     Weber    M    1200
## 3  Durkheim    M    1300
## 4    Arendt    F    2000
## 5 Maquiavel    M     500
mean(Funcionarios$salario)
## [1] 1200

IIMPORTAR DO CSV

library(readr)
titanic3 <- read_csv("Base_de_dados-master/titanic3.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   pclass = col_double(),
##   survived = col_double(),
##   name = col_character(),
##   sex = col_character(),
##   age = col_double(),
##   sibsp = col_double(),
##   parch = col_double(),
##   ticket = col_character(),
##   fare = col_double(),
##   cabin = col_character(),
##   embarked = col_character(),
##   boat = col_character(),
##   body = col_double(),
##   home.dest = col_character()
## )
View(titanic3)

IIMPORTAR DO EXCEL

  library(readxl)
Familias <- read_excel("Base_de_dados-master/Familias.xls", 
                       col_types = c("numeric", "text", "text", 
                                     "text", "numeric", "numeric"))
View(Familias)

IMPORTAR ARQUIVO DO CSV

  library(readr)
FifaData <- read_csv("Base_de_dados-master/FifaData.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   .default = col_double(),
##   Name = col_character(),
##   Nationality = col_character(),
##   National_Position = col_character(),
##   Club = col_character(),
##   Club_Position = col_character(),
##   Club_Joining = col_character(),
##   Height = col_character(),
##   Weight = col_character(),
##   Preffered_Foot = col_character(),
##   Birth_Date = col_character(),
##   Preffered_Position = col_character(),
##   Work_Rate = col_character()
## )
## i Use `spec()` for the full column specifications.
View(FifaData)
     
  library(readr)
Fifa <- read_csv("Base_de_dados-master/FifaData.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   .default = col_double(),
##   Name = col_character(),
##   Nationality = col_character(),
##   National_Position = col_character(),
##   Club = col_character(),
##   Club_Position = col_character(),
##   Club_Joining = col_character(),
##   Height = col_character(),
##   Weight = col_character(),
##   Preffered_Foot = col_character(),
##   Birth_Date = col_character(),
##   Preffered_Position = col_character(),
##   Work_Rate = col_character()
## )
## i Use `spec()` for the full column specifications.
View(Fifa)

pergunta 1 - QUANTOS BRASILEIROS NA FIFA

pergunta 2 - QUAL A PROPORCAO DE ALEMAES

pergunta 3 - QUAL A POSICAO NO PAIS

pergunta 4 - QUANTOS USAM O P A P NA BASE DE DADOS FAMILIA

pergunta 5 - PROPORCAO ENSINO MEDIO

tabela1 <- table(Fifa$Nationality)
View(tabela1)
options(scipen = 999*100)
prop.table(tabela1)
## 
##           Afghanistan               Albania               Algeria 
##         0.00011371390         0.00210370707         0.00284284740 
##                Angola     Antigua & Barbuda             Argentina 
##         0.00062542643         0.00022742779         0.06237207187 
##               Armenia                 Aruba             Australia 
##         0.00045485558         0.00005685695         0.01330452581 
##               Austria            Azerbaijan              Barbados 
##         0.01512394815         0.00045485558         0.00005685695 
##               Belarus               Belgium                Belize 
##         0.00090971117         0.01506709120         0.00005685695 
##                 Benin               Bermuda               Bolivia 
##         0.00090971117         0.00034114169         0.00170570844 
##    Bosnia Herzegovina                Brazil              Bulgaria 
##         0.00295656129         0.05236524903         0.00198999318 
##          Burkina Faso              Cameroon                Canada 
##         0.00079599727         0.00545826700         0.00335455993 
##            Cape Verde  Central African Rep.                  Chad 
##         0.00125085285         0.00034114169         0.00005685695 
##                 Chile              China PR        Chinese Taipei 
##         0.02262906527         0.00170570844         0.00005685695 
##              Colombia               Comoros                 Congo 
##         0.03365931317         0.00051171253         0.00102342506 
##            Costa Rica               Croatia                  Cuba 
##         0.00170570844         0.00659540596         0.00011371390 
##               Curacao                Cyprus        Czech Republic 
##         0.00062542643         0.00034114169         0.00324084603 
##               Denmark    Dominican Republic              DR Congo 
##         0.01944507619         0.00011371390         0.00329770298 
##               Ecuador                 Egypt           El Salvador 
##         0.00193313623         0.00170570844         0.00011371390 
##               England     Equatorial Guinea               Eritrea 
##         0.09199454173         0.00045485558         0.00005685695 
##               Estonia         Faroe Islands FIFA16_NationName_215 
##         0.00045485558         0.00034114169         0.00011371390 
##                  Fiji               Finland                France 
##         0.00005685695         0.00341141688         0.05537866727 
##         FYR Macedonia                 Gabon                Gambia 
##         0.00102342506         0.00085285422         0.00079599727 
##               Georgia               Germany                 Ghana 
##         0.00159199454         0.03917443712         0.00676597680 
##             Gibraltar                Greece               Grenada 
##         0.00005685695         0.00488969752         0.00005685695 
##                  Guam             Guatemala                Guinea 
##         0.00005685695         0.00011371390         0.00193313623 
##         Guinea Bissau                Guyana                 Haiti 
##         0.00096656811         0.00017057084         0.00068228338 
##              Honduras               Hungary               Iceland 
##         0.00090971117         0.00233113486         0.00267227655 
##                 India                  Iran                  Iraq 
##         0.00170570844         0.00062542643         0.00045485558 
##                Israel                 Italy           Ivory Coast 
##         0.00079599727         0.04269956789         0.00511712531 
##               Jamaica                 Japan            Kazakhstan 
##         0.00204685013         0.02677962247         0.00011371390 
##                 Kenya             Korea DPR        Korea Republic 
##         0.00034114169         0.00011371390         0.01825108028 
##                Kosovo                Kuwait                Latvia 
##         0.00176256539         0.00011371390         0.00045485558 
##               Lebanon               Lesotho               Liberia 
##         0.00011371390         0.00005685695         0.00022742779 
##                 Libya         Liechtenstein             Lithuania 
##         0.00022742779         0.00039799864         0.00085285422 
##            Luxembourg            Madagascar                  Mali 
##         0.00051171253         0.00011371390         0.00261541960 
##                 Malta            Mauritania             Mauritius 
##         0.00022742779         0.00028428474         0.00005685695 
##                Mexico               Moldova            Montenegro 
##         0.01938821924         0.00034114169         0.00130770980 
##            Montserrat               Morocco            Mozambique 
##         0.00017057084         0.00420741415         0.00028428474 
##               Namibia           Netherlands           New Zealand 
##         0.00005685695         0.02422105981         0.00170570844 
##                 Niger               Nigeria      Northern Ireland 
##         0.00011371390         0.00693654765         0.00471912668 
##                Norway                  Oman              Pakistan 
##         0.01944507619         0.00005685695         0.00005685695 
##             Palestine                Panama      Papua New Guinea 
##         0.00022742779         0.00062542643         0.00005685695 
##              Paraguay                  Peru           Philippines 
##         0.00426427109         0.00193313623         0.00011371390 
##                Poland              Portugal           Puerto Rico 
##         0.01864907892         0.02046850125         0.00011371390 
##                 Qatar   Republic of Ireland               Romania 
##         0.00011371390         0.02513077098         0.00346827382 
##                Russia            San Marino   São Tomé & Príncipe 
##         0.01756879691         0.00005685695         0.00005685695 
##          Saudi Arabia              Scotland               Senegal 
##         0.02012735956         0.01660222879         0.00676597680 
##                Serbia          Sierra Leone              Slovakia 
##         0.00773254492         0.00034114169         0.00346827382 
##              Slovenia               Somalia          South Africa 
##         0.00329770298         0.00005685695         0.00443484194 
##                 Spain        St Kitts Nevis              St Lucia 
##         0.05731180350         0.00017057084         0.00005685695 
##              Suriname                Sweden           Switzerland 
##         0.00022742779         0.02149192631         0.01193995906 
##                 Syria              Tanzania           Timor-Leste 
##         0.00028428474         0.00011371390         0.00005685695 
##                  Togo     Trinidad & Tobago               Tunisia 
##         0.00056856948         0.00039799864         0.00198999318 
##                Turkey                Uganda               Ukraine 
##         0.01660222879         0.00039799864         0.00335455993 
##         United States               Uruguay            Uzbekistan 
##         0.01887650671         0.00869911303         0.00017057084 
##             Venezuela                 Wales                Zambia 
##         0.00238799181         0.00693654765         0.00022742779 
##              Zimbabwe 
##         0.00056856948
round(prop.table(tabela1) * 100, 2)
## 
##           Afghanistan               Albania               Algeria 
##                  0.01                  0.21                  0.28 
##                Angola     Antigua & Barbuda             Argentina 
##                  0.06                  0.02                  6.24 
##               Armenia                 Aruba             Australia 
##                  0.05                  0.01                  1.33 
##               Austria            Azerbaijan              Barbados 
##                  1.51                  0.05                  0.01 
##               Belarus               Belgium                Belize 
##                  0.09                  1.51                  0.01 
##                 Benin               Bermuda               Bolivia 
##                  0.09                  0.03                  0.17 
##    Bosnia Herzegovina                Brazil              Bulgaria 
##                  0.30                  5.24                  0.20 
##          Burkina Faso              Cameroon                Canada 
##                  0.08                  0.55                  0.34 
##            Cape Verde  Central African Rep.                  Chad 
##                  0.13                  0.03                  0.01 
##                 Chile              China PR        Chinese Taipei 
##                  2.26                  0.17                  0.01 
##              Colombia               Comoros                 Congo 
##                  3.37                  0.05                  0.10 
##            Costa Rica               Croatia                  Cuba 
##                  0.17                  0.66                  0.01 
##               Curacao                Cyprus        Czech Republic 
##                  0.06                  0.03                  0.32 
##               Denmark    Dominican Republic              DR Congo 
##                  1.94                  0.01                  0.33 
##               Ecuador                 Egypt           El Salvador 
##                  0.19                  0.17                  0.01 
##               England     Equatorial Guinea               Eritrea 
##                  9.20                  0.05                  0.01 
##               Estonia         Faroe Islands FIFA16_NationName_215 
##                  0.05                  0.03                  0.01 
##                  Fiji               Finland                France 
##                  0.01                  0.34                  5.54 
##         FYR Macedonia                 Gabon                Gambia 
##                  0.10                  0.09                  0.08 
##               Georgia               Germany                 Ghana 
##                  0.16                  3.92                  0.68 
##             Gibraltar                Greece               Grenada 
##                  0.01                  0.49                  0.01 
##                  Guam             Guatemala                Guinea 
##                  0.01                  0.01                  0.19 
##         Guinea Bissau                Guyana                 Haiti 
##                  0.10                  0.02                  0.07 
##              Honduras               Hungary               Iceland 
##                  0.09                  0.23                  0.27 
##                 India                  Iran                  Iraq 
##                  0.17                  0.06                  0.05 
##                Israel                 Italy           Ivory Coast 
##                  0.08                  4.27                  0.51 
##               Jamaica                 Japan            Kazakhstan 
##                  0.20                  2.68                  0.01 
##                 Kenya             Korea DPR        Korea Republic 
##                  0.03                  0.01                  1.83 
##                Kosovo                Kuwait                Latvia 
##                  0.18                  0.01                  0.05 
##               Lebanon               Lesotho               Liberia 
##                  0.01                  0.01                  0.02 
##                 Libya         Liechtenstein             Lithuania 
##                  0.02                  0.04                  0.09 
##            Luxembourg            Madagascar                  Mali 
##                  0.05                  0.01                  0.26 
##                 Malta            Mauritania             Mauritius 
##                  0.02                  0.03                  0.01 
##                Mexico               Moldova            Montenegro 
##                  1.94                  0.03                  0.13 
##            Montserrat               Morocco            Mozambique 
##                  0.02                  0.42                  0.03 
##               Namibia           Netherlands           New Zealand 
##                  0.01                  2.42                  0.17 
##                 Niger               Nigeria      Northern Ireland 
##                  0.01                  0.69                  0.47 
##                Norway                  Oman              Pakistan 
##                  1.94                  0.01                  0.01 
##             Palestine                Panama      Papua New Guinea 
##                  0.02                  0.06                  0.01 
##              Paraguay                  Peru           Philippines 
##                  0.43                  0.19                  0.01 
##                Poland              Portugal           Puerto Rico 
##                  1.86                  2.05                  0.01 
##                 Qatar   Republic of Ireland               Romania 
##                  0.01                  2.51                  0.35 
##                Russia            San Marino   São Tomé & Príncipe 
##                  1.76                  0.01                  0.01 
##          Saudi Arabia              Scotland               Senegal 
##                  2.01                  1.66                  0.68 
##                Serbia          Sierra Leone              Slovakia 
##                  0.77                  0.03                  0.35 
##              Slovenia               Somalia          South Africa 
##                  0.33                  0.01                  0.44 
##                 Spain        St Kitts Nevis              St Lucia 
##                  5.73                  0.02                  0.01 
##              Suriname                Sweden           Switzerland 
##                  0.02                  2.15                  1.19 
##                 Syria              Tanzania           Timor-Leste 
##                  0.03                  0.01                  0.01 
##                  Togo     Trinidad & Tobago               Tunisia 
##                  0.06                  0.04                  0.20 
##                Turkey                Uganda               Ukraine 
##                  1.66                  0.04                  0.34 
##         United States               Uruguay            Uzbekistan 
##                  1.89                  0.87                  0.02 
##             Venezuela                 Wales                Zambia 
##                  0.24                  0.69                  0.02 
##              Zimbabwe 
##                  0.06
tabela2 <- table(Fifa$National_Position)
View(tabela2)
round(prop.table(tabela2)*100, 2)
## 
##   CAM    CB   CDM    CM    GK   LAM    LB   LCB   LCM   LDM    LF    LM    LS 
##  1.77  0.84  0.84  0.84  4.37  0.37  3.63  4.47  2.33  1.77  0.28  2.98  1.67 
##    LW   LWB   RAM    RB   RCB   RCM   RDM    RF    RM    RS    RW   RWB    ST 
##  0.65  0.37  0.37  3.53  4.28  2.33  1.67  0.28  3.16  1.67  0.65  0.37  2.79 
##   Sub 
## 51.72

trocando anotacao cientifica pra decimal,

tabela de proporcao,

arredondar,

proporcao tabela 2,

respondendo pergunta 4 e 5.

tabela3 <- table(Familias$p.a.p)
View(tabela3)

tabela4 <- table(Familias$instr)
View(tabela4)
round(prop.table(tabela4)*100, 2)
## 
## Ensino fundamental       Ensino médio      Sem Instrução 
##              31.67              36.67              31.67

grafico de pizza simples.

  pie(tabela3)

simples + titulo.

pie(tabela3, main = "Grafico 1 - uso programa alimentação popular")

simples + tilulo + cor

pie(tabela3,col = c("lightgreen","pink"), main = "Grafico 1 - uso programa alimentação popular")

para saber as cores dentro do R colors()

pegar cores no google - no endereco colocar #ffffff, escolher a cor, copiar o codigo e colar

pie(tabela3,col = c("#e35454","pink"), main = "Grafico 1 - uso programa alimentação popular")

pizza de cor posicao do jogador

pie(tabela2)

pizza tabela 4

pie(tabela4)

pie(tabela4, main = " Graficoo 2- Posição do jogador")

pie(tabela4, col = c("#9394c9","#424382","#181bc7"), main = "Grafico 2 - Posição do jogador")

pizza facilmente fica poluido e dificil de verificar valores

como fazer grafico de barras tabela 4

barplot(tabela4)

como colocar categorias em hierarquias, em ordem

tabela4 
## 
## Ensino fundamental       Ensino médio      Sem Instrução 
##                 38                 44                 38
Familias$instr <- factor(Familias$instr, levels = c("Sem Instrução", "Ensino fundamental","Ensino médio"))
barplot(tabela4)

tabela4 <- table(Familias$instr)
tabela4
## 
##      Sem Instrução Ensino fundamental       Ensino médio 
##                 38                 38                 44

agora o grafico ficara na ordem correta (sem instruao, fundamental e medio)

barplot(tabela4)

colocar titulo e cor

barplot(tabela4, main = "Tabela 2 - Escolaridade", col = c("#8f1414", "#e04848", "#eda1a1"))

acertar limite da reta y

barplot(tabela4, main = "Tabela 2 - Escolaridade", col = c("#8f1414", "#e04848", "#eda1a1"), ylim = c(0,50))

para colocar legenda dentro do grafico, cor da legenda, posicao da legenda, tamanho da fonte

tabela4 <-table(Familias$instr)
barras <- barplot(tabela4, main = "Tabela 2 - Escolaridade", col = c("#8f1414", "#e04848", "#eda1a1"), ylim = c(0,50))  
text(barras, 5, tabela4, cex =2, pos =3, col = c("black", "black", "black"))