Glaciares en Chile
Tarapacá: Automatización del proceso de extracción de data por glaciar (análisis espacial) y en el tiempo.
Abstract
Éste trabajo contiene elas lÃneas para extraer el área considerada glaciar en cada lÃmite administrativo entregado en un shp. Se propone una lógica para calcular el porcentaje glaciar. Se añade el código para automatizar la extracción en el tiempo. También avanzamos en torno a la determinación de las matrices de confusión para cada una de las técnicas de ML utilizadas, para mejorar las imágenes: RF, CART y SVM.
library(rgee)
ee_Initialize("tarredwall@gmail.com", drive = TRUE)
## -- rgee 1.0.9 --------------------------------------- earthengine-api 0.1.259 --
## v email: tarredwall@gmail.com
## v Google Drive credentials:
v Google Drive credentials: FOUND
## v Initializing Google Earth Engine:
v Initializing Google Earth Engine: DONE!
##
v Earth Engine user: users/tarredwall
## --------------------------------------------------------------------------------
A partir del 15 de febrero de 2018, se debe utilizar la siguiente denominación:
Yo
I Región de Arica y Parinacota. Lunes 24 II Región de Tarapacá. Martes 25 III Región de Antofagasta. Miercoles 26 IV Región de Atacama. Jueves 27 V Región de Coquimbo. Viernes 28 VI Región de ValparaÃso. Lunes 31
Victor
VII Región Metropolitana de Santiago. Lunes 24 VIII Región del Libertador General Bernardo O’Higgins. Martes 25 IX Región del Maule. Miercoles 26 X Región del Ñuble. Jueves 27 XI Región del BiobÃo. Viernes 28 XII Región de La AraucanÃa. Lunes 31
Abner
XIII Región de Los RÃos. Miercoles 26 XIV Región de Los Lagos. Jueves 27 XV Región de Aysén del General Carlos Ibáñez del Campo. Viernes 28 XVI Región de Magallanes y la Antártica Chilena. Lunes 31
region_tara <- st_read("rrss/Region_01.shp",
quiet = TRUE) %>%
sf_as_ee()
## Registered S3 method overwritten by 'geojsonsf':
## method from
## print.geojson geojson
tara <- region_tara$geometry()
Map$setCenter(lon = -69.7522, lat = -20.18, zoom = 7)
Map$addLayer(tara)
start <- ee$Date("2019-01-01")
finish <- ee$Date("2019-04-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(tara)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
Map$setCenter(lon = -69.7522, lat = -20.18, zoom = 7)
Map$addLayer(first, vizParams, "Landsat 8 image")
Construimos una imagen raster con una columna llamada nd con dos categorÃas para cada pixel: 0 si es rojo, 1 si es verde
getNDGI <- function(image)
{
image$normalizedDifference(c("B4", "B3")) > 0
}
ndgi <- getNDGI(first)
## Warning: Ops.ee.image.Image will be deprecated in rgee v.1.1.0. Please install
## rgeeExtra (https://github.com/r-earthengine/rgeeExtra). Deeply sorry for the
## inconveniences.
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
Map$setCenter(lon = -69.7522, lat = -20.18, zoom = 7)
Map$addLayer(ndgi, ndgiParams, "NDGI")
glaciar_tara <- st_read("GlaciaresxRegion/Simple_TARAPACA.shp",
quiet = TRUE) %>%
sf_as_ee()
glaciar_tara <- glaciar_tara$geometry()
Map$setCenter(lon = -69.7522, lat = -20.18, zoom = 7)
Map$addLayer(glaciar_tara, ndgiParams, "NDGI")
ESTA ES LA IMAGEN SOBRE LA QUE EXTRAEREMOS EL PRIMER SET DE MUESTRAS
glaciares_adm_con_ngvi <- ndgi$clip(glaciar_tara)
Map$setCenter(lon = -69.7522, lat = -20.18, zoom = 7)
Map$addLayer(glaciares_adm_con_ngvi, ndgiParams, "NDGI")
Con esto concluimos la primera parte de nuestra generacion de raster para, como siguiente paso, extraer las muestras.
tara_sin_glacia <- tara$difference(glaciar_tara, ee$ErrorMargin(1))
Map$setCenter(lon = -69.7522, lat = -20.18, zoom = 7)
Map$addLayer(tara_sin_glacia, ndgiParams, "NDGI")
ndvi_tarapaca_sin_glaciares <- ndgi$clip(tara_sin_glacia)
Map$setCenter(lon = -69.7522, lat = -20.18, zoom = 7)
Map$addLayer(ndvi_tarapaca_sin_glaciares, ndgiParams, "NDGI")
7.1. pixeles rojos interiores
7.2. pixeles verdes exteriores
Necesitamos intersectar las regiones administrativas glaciares con nuestro raster ndvi y de ahi extraer las muestras de color rojo que simbolizarán los glaciares.
limites_glaciares_con_rasters <- ndgi$clip(glaciar_tara)
Map$setCenter(lon = -68.69644, lat = -19.7581, zoom = 15)
Map$addLayer(limites_glaciares_con_rasters , ndgiParams, "NDGI")
1 Muestreo
# region_arica <- st_read("Regiones_separadas/Region_15.shp", quiet = TRUE)
# region_arica
Los rojos interiores son glaciares, 0 = rojo y son llamados muestras_in_gee_rojas.
muestras_in <- ndgi$sampleRegions(
collection = ee$Feature(glaciar_tara),
scale = 100,
tileScale = 16,
geometries = TRUE
)
muestras_in_gee_rojas = muestras_in$filter(ee$Filter$eq('nd', 0))
Map$setCenter(lon = -68.69644, lat = -19.7581, zoom = 15)
Map$addLayer(
eeObject = muestras_in_gee_rojas,
visParams = {},
name = "puntos glaciares"
)
ndvi_tara_sin_glaciares <- ndgi$clip(tara_sin_glacia)
Map$setCenter(lon = -68.69644, lat = -19.7581, zoom = 8)
Map$addLayer(ndvi_tara_sin_glaciares, ndgiParams, "NDGI")
Los verdes exteriores no son glaciares 1 = verde
muestras_in <- ndgi$sampleRegions(
collection = ee$Feature(ndvi_tara_sin_glaciares),
scale = 10000,
tileScale = 16,
geometries = TRUE
)
muestras_out_gee_verdes = muestras_in$filter(ee$Filter$eq('nd', 1))
Map$setCenter(lon = -69.80584, lat = -17.67837, zoom = 7)
Map$addLayer(
eeObject = muestras_out_gee_verdes,
visParams = {},
name = "puntos no glaciares"
)
III debemos unir muestras y generar el random forest
union_total <- muestras_out_gee_verdes$merge(muestras_in_gee_rojas)
region_arica <- st_read("rrss/Region_01.shp",
quiet = TRUE) %>%
sf_as_ee()
arica <- region_arica$geometry()
start <- ee$Date("2019-01-01")
finish <- ee$Date("2019-04-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(arica)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# Use these bands for prediction.
bands <- c("B2", "B3", "B4", "B8")
# This property of the table stores the land cover labels.
label <- "nd"
# Overlay the points on the imagery to get training.
training <- first$select(bands)$sampleRegions(
collection = union_total,
properties = list(label),
scale = 10
)
# Train a CART classifier with default parameters.
trained <- ee$Classifier$smileRandomForest(10)$train(training, label, bands)
# Classify the image with the same bands used for training.
classified_rf <- first$select(bands)$classify(trained)
# Viz parameters.
# viz_img <- list(bands = c("B4", "B3", "B2"), max = 0.4)
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
viz_class <- list(palette = c("red", "green", "blue"), min = 0, max = 2)
Map$addLayer(first, vizParams, name = "image") +
Map$addLayer(classified_rf, viz_class, name = "classification")
18:29 18:30
Le aplicamos la matriz de confusion:
trainAccuracy = trained$confusionMatrix()
trainAccuracy$getInfo()
## [[1]]
## [1] 11 1
##
## [[2]]
## [1] 0 451
18:40 18:43
region_tara <- st_read("rrss/Region_01.shp",
quiet = TRUE) %>%
sf_as_ee()
tara <- region_tara$geometry()
start <- ee$Date("2019-01-01")
finish <- ee$Date("2019-04-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(tara)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# Use these bands for prediction.
bands <- c("B2", "B3", "B4", "B8")
# This property of the table stores the land cover labels.
label <- "nd"
# Overlay the points on the imagery to get training.
training <- first$select(bands)$sampleRegions(
collection = union_total,
properties = list(label),
scale = 10
)
# Train a CART classifier with default parameters.
trained <- ee$Classifier$smileCart(10)$train(training, label, bands)
# Classify the image with the same bands used for training.
classified <- first$select(bands)$classify(trained)
# Viz parameters.
# viz_img <- list(bands = c("B4", "B3", "B2"), max = 0.4)
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
viz_class <- list(palette = c("red", "green", "blue"), min = 0, max = 2)
Map$addLayer(first, vizParams, name = "image") +
Map$addLayer(classified, viz_class, name = "classification")
18:47 18:50
trainAccuracy = trained$confusionMatrix()
trainAccuracy$getInfo()
## [[1]]
## [1] 12 0
##
## [[2]]
## [1] 0 451
18:51 18 53
region_arica <- st_read("Regiones_separadas/Region_15.shp",
quiet = TRUE) %>%
sf_as_ee()
arica <- region_arica$geometry()
start <- ee$Date("2019-01-01")
finish <- ee$Date("2019-04-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(arica)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# Use these bands for prediction.
bands <- c("B2", "B3", "B4", "B8")
# This property of the table stores the land cover labels.
label <- "nd"
# Overlay the points on the imagery to get training.
training <- first$select(bands)$sampleRegions(
collection = union_total,
properties = list(label),
scale = 10
)
classifier = ee$Classifier$libsvm(
kernelType = "RBF",
gamma = 0.5,
cost = 10
)
# Train a CART classifier with default parameters.
trained = classifier$train(training, label, bands)
# Classify the image with the same bands used for training.
classified <- first$select(bands)$classify(trained)
# Viz parameters.
# viz_img <- list(bands = c("B4", "B3", "B2"), max = 0.4)
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
viz_class <- list(palette = c("red", "green", "blue"), min = 0, max = 2)
Map$addLayer(first, vizParams, name = "image") +
Map$addLayer(classified, viz_class, name = "classification")
No se puede obtener la matriz de confusion para libsvm pues excede limites de memoria
trainAccuracy = trained$confusionMatrix()
trainAccuracy$getInfo()
## [[1]]
## [1] 1 0
##
## [[2]]
## [1] 0 142
mask_0 <- read_sf("GlaciaresxRegion/Simple_TARAPACA.shp")
#mask_0
reg_15_2 <- mask_0 %>% dplyr::select(COD_GLA,AREA_Km2)
varia <- reg_15_2 %>%
sf_as_ee()
region_0 <- varia$geometry()
sale_4 <- classified_rf$clip(region_0)
puntos_r <- sale_4$select('classification')$eq(0)
# Reducer$sum() returns a Reducer that computes the (weighted) sum of its inputs.
areas_rojas = puntos_r$reduceRegions(
reducer= ee$Reducer$sum(),
collection= varia,
scale= 30
)
rojas <- areas_rojas$getInfo()
rojas1 <- as.data.frame(rojas)
# rojas1
puntos_v <- sale_4$select('classification')$eq(1)
areas_verdes = puntos_v$reduceRegions(
reducer= ee$Reducer$sum(),
collection= varia,
scale= 30
)
verdes <- areas_verdes$getInfo()
verdes1 <- as.data.frame(verdes)
# verdes1
r_v <- rbind(colnames(rojas1),rojas1,verdes1)
r_v <- r_v[1:4,]
r_v <- r_v[-3,]
r_v <- t(r_v)
r_v <- as.data.frame(r_v)
names(r_v)[1] <- "col1"
names(r_v)[2] <- "col2"
names(r_v)[3] <- "col3"
r_v$col4 <- r_v$col3
r_v$col5 <- r_v$col3
# r_v
data1 <- filter(r_v, grepl("features.properties.COD_GLA",col1))
data1 <- as.data.frame(data1[,2])
# data1
data2 <- filter(r_v, grepl("features.properties.sum",col1))
data2 <- as.data.frame(data2[,c(2,3)])
# data2
data3 <- filter(r_v, grepl("features.properties.AREA_Km2",col1))
data3 <- as.data.frame(data3[,c(2,3)])
# data3
data4 <- cbind(data1,data2,data3)
colnames(data4) <- c("codigo_gla", "rojo", "verde", "area_Km2(shp)")
data4
## codigo_gla rojo verde
## features.properties.sum CL101044025 49.2274509803922 0
## features.properties.sum.1 CL101044018 10.2509803921569 102.247058823529
## features.properties.sum.2 CL101044017 2 124.862745098039
## features.properties.sum.3 CL101044019 0 97.7882352941177
## features.properties.sum.4 CL101044016 1.05098039215686 74.0392156862745
## features.properties.sum.5 CL101044015 0 34.8666666666667
## features.properties.sum.6 CL101044014 1.02352941176471 29.9019607843137
## features.properties.sum.7 CL101044013 0 40.1607843137255
## features.properties.sum.8 CL101044012 0 13.8980392156863
## features.properties.sum.9 CL101044011 0 265.913725490196
## features.properties.sum.10 CL101044010 0 5.82352941176471
## features.properties.sum.11 CL101044007 0 57.3803921568627
## features.properties.sum.12 CL101044008 0 201.643137254902
## features.properties.sum.13 CL101044006 0 221.235294117647
## features.properties.sum.14 CL101042002 0 81.0078431372549
## features.properties.sum.15 CL101042001 2.75294117647059 77.1843137254902
## features.properties.sum.16 CL101042003 0 63.2117647058824
## features.properties.sum.17 CL101042005 1.00392156862745 32.878431372549
## features.properties.sum.18 CL101042004 0 20.121568627451
## features.properties.sum.19 CL101610012 0 154.098039215686
## features.properties.sum.20 CL101610013 0 110.176470588235
## features.properties.sum.21 CL101610011 0 6.61960784313725
## features.properties.sum.22 CL101610010 0 94.2666666666667
## features.properties.sum.23 CL101610009 0 72.7764705882353
## features.properties.sum.24 CL101610008 0 41.6274509803922
## features.properties.sum.25 CL101610005 0 78.9098039215686
## features.properties.sum.26 CL101610004 0 63.0549019607843
## features.properties.sum.27 CL101610002 0 113.752941176471
## features.properties.sum.28 CL101610003 0 97.6431372549019
## features.properties.sum.29 CL101610001 0 114.43137254902
## features.properties.sum.30 CL101611002 0 159.976470588235
## features.properties.sum.31 CL101720004 0 30.7843137254902
## features.properties.sum.32 CL101720003 0 129
## features.properties.sum.33 CL101720001 0 9.56470588235294
## features.properties.sum.34 CL101720002 0 73.6862745098039
## features.properties.sum.35 CL101720008 0 188.541176470588
## features.properties.sum.36 CL101720005 0 22.3333333333333
## features.properties.sum.37 CL101720006 0 15.2666666666667
## features.properties.sum.38 CL101720009 0 13.2156862745098
## features.properties.sum.39 CL101720007 0 9.65490196078431
## features.properties.sum.40 CL101730001 0 129.050980392157
## features.properties.sum.41 CL101730002 0 35.5254901960784
## features.properties.sum.42 CL101730009 0 21.278431372549
## features.properties.sum.43 CL101730008 0 19.0705882352941
## features.properties.sum.44 CL101730011 0 53.4156862745098
## features.properties.sum.45 CL101730012 0.203921568627451 72.8862745098039
## features.properties.sum.46 CL101730013 0 63.9176470588235
## features.properties.sum.47 CL101730010 0 7.74117647058823
## features.properties.sum.48 CL101730014 0 144.137254901961
## features.properties.sum.49 CL101730016 0 25.1607843137255
## features.properties.sum.50 CL101730017 0 9.94901960784314
## features.properties.sum.51 CL101730015 0 9.06666666666666
## features.properties.sum.52 CL101730018 0 11.5607843137255
## features.properties.sum.53 CL101730004 0 33.2745098039216
## features.properties.sum.54 CL101730003 0 79.1529411764706
## features.properties.sum.55 CL101730006 0 27.6901960784314
## features.properties.sum.56 CL101730007 0 24.5843137254902
## features.properties.sum.57 CL101730005 0 13.2509803921569
## features.properties.sum.58 CL101044001 2 47.4078431372549
## features.properties.sum.59 CL101044002 0 27.0235294117647
## features.properties.sum.60 CL101044003 0.156862745098039 97.0078431372549
## features.properties.sum.61 CL101044004 0 31.4117647058824
## features.properties.sum.62 CL101044009 0 13.6901960784314
## features.properties.sum.63 CL101044005 3.29411764705882 18.8235294117647
## features.properties.sum.64 CL101040008 0 51.1137254901961
## features.properties.sum.65 CL101611001 0 128.905882352941
## features.properties.sum.66 CL101610024 0 53.6862745098039
## features.properties.sum.67 CL101610023 0 256.78431372549
## features.properties.sum.68 CL101610022 0 229.074509803922
## features.properties.sum.69 CL101610021 0 180.870588235294
## features.properties.sum.70 CL101610020 0 106.007843137255
## features.properties.sum.71 CL101610018 0 145.83137254902
## features.properties.sum.72 CL101610017 0 119.317647058824
## features.properties.sum.73 CL101610016 0 63.3176470588235
## features.properties.sum.74 CL101040006 0 53.2901960784314
## features.properties.sum.75 CL101040005 0 55.3372549019608
## features.properties.sum.76 CL101040004 3.6078431372549 9.25882352941177
## features.properties.sum.77 CL101040003 0 7.43529411764706
## features.properties.sum.78 CL101610015 0 9.92156862745098
## features.properties.sum.79 CL101610014 0 59.9921568627451
## features.properties.sum.80 CL101610019 0 253.152941176471
## features.properties.sum.81 CL101040002 0 50.8196078431372
## features.properties.sum.82 CL101040007 3.75686274509804 45.8470588235294
## features.properties.sum.83 CL101040001 23.7176470588235 24.756862745098
## features.properties.sum.84 CL101040009 45.1254901960784 54.4
## features.properties.sum.85 CL101044024 410.019607843137 0.0549019607843137
## features.properties.sum.86 CL101070001 18.7686274509804 10.3019607843137
## features.properties.sum.87 CL101044020 30.8039215686274 0
## features.properties.sum.88 CL101044022 24.9058823529412 0
## features.properties.sum.89 CL101044021 15.3411764705882 0
## features.properties.sum.90 CL101044023 11.956862745098 0
## area_Km2(shp) NA
## features.properties.sum 0.0397270010711 0.0397270010711
## features.properties.sum.1 0.100876482862 0.100876482862
## features.properties.sum.2 0.109852809052 0.109852809052
## features.properties.sum.3 0.0873709651722 0.0873709651722
## features.properties.sum.4 0.0639482581884 0.0639482581884
## features.properties.sum.5 0.0390825631323 0.0390825631323
## features.properties.sum.6 0.0327605622869 0.0327605622869
## features.properties.sum.7 0.0382199791074 0.0382199791074
## features.properties.sum.8 0.0167628398049 0.0167628398049
## features.properties.sum.9 0.234736140147 0.234736140147
## features.properties.sum.10 0.0123072515574 0.0123072515574
## features.properties.sum.11 0.0490761861993 0.0490761861993
## features.properties.sum.12 0.181770894446 0.181770894446
## features.properties.sum.13 0.187241197168 0.187241197168
## features.properties.sum.14 0.0822324117868 0.0822324117868
## features.properties.sum.15 0.0811335051897 0.0811335051897
## features.properties.sum.16 0.0517317014976 0.0517317014976
## features.properties.sum.17 0.0342342838388 0.0342342838388
## features.properties.sum.18 0.025537434093 0.025537434093
## features.properties.sum.19 0.14556645363 0.14556645363
## features.properties.sum.20 0.0969989514597 0.0969989514597
## features.properties.sum.21 0.0133418051918 0.0133418051918
## features.properties.sum.22 0.0876500187874 0.0876500187874
## features.properties.sum.23 0.0722716222512 0.0722716222512
## features.properties.sum.24 0.0460606415757 0.0460606415757
## features.properties.sum.25 0.0863192881262 0.0863192881262
## features.properties.sum.26 0.0786716671606 0.0786716671606
## features.properties.sum.27 0.0996942476728 0.0996942476728
## features.properties.sum.28 0.0926249593749 0.0926249593749
## features.properties.sum.29 0.107310516435 0.107310516435
## features.properties.sum.30 0.125452215699 0.125452215699
## features.properties.sum.31 0.0370788979097 0.0370788979097
## features.properties.sum.32 0.121432954093 0.121432954093
## features.properties.sum.33 0.0156484103605 0.0156484103605
## features.properties.sum.34 0.0637414139919 0.0637414139919
## features.properties.sum.35 0.163304691787 0.163304691787
## features.properties.sum.36 0.0228456773695 0.0228456773695
## features.properties.sum.37 0.0161851633664 0.0161851633664
## features.properties.sum.38 0.0165129804368 0.0165129804368
## features.properties.sum.39 0.0198858464782 0.0198858464782
## features.properties.sum.40 0.121994691845 0.121994691845
## features.properties.sum.41 0.0391150993622 0.0391150993622
## features.properties.sum.42 0.0305984387632 0.0305984387632
## features.properties.sum.43 0.0225271588162 0.0225271588162
## features.properties.sum.44 0.0661863412709 0.0661863412709
## features.properties.sum.45 0.0641183674004 0.0641183674004
## features.properties.sum.46 0.0711972768362 0.0711972768362
## features.properties.sum.47 0.0127425943588 0.0127425943588
## features.properties.sum.48 0.130168840973 0.130168840973
## features.properties.sum.49 0.0425520003997 0.0425520003997
## features.properties.sum.50 0.0157886226892 0.0157886226892
## features.properties.sum.51 0.0155196563794 0.0155196563794
## features.properties.sum.52 0.0181153020415 0.0181153020415
## features.properties.sum.53 0.0346999506794 0.0346999506794
## features.properties.sum.54 0.071272988267 0.071272988267
## features.properties.sum.55 0.0311922006569 0.0311922006569
## features.properties.sum.56 0.0269613307305 0.0269613307305
## features.properties.sum.57 0.0182961256272 0.0182961256272
## features.properties.sum.58 0.0474476041426 0.0474476041426
## features.properties.sum.59 0.030925134966 0.030925134966
## features.properties.sum.60 0.0990839862833 0.0990839862833
## features.properties.sum.61 0.0316396276002 0.0316396276002
## features.properties.sum.62 0.0151640809662 0.0151640809662
## features.properties.sum.63 0.0261707721535 0.0261707721535
## features.properties.sum.64 0.0531454414338 0.0531454414338
## features.properties.sum.65 0.108143702435 0.108143702435
## features.properties.sum.66 0.0585930577914 0.0585930577914
## features.properties.sum.67 0.232784007153 0.232784007153
## features.properties.sum.68 0.189817275455 0.189817275455
## features.properties.sum.69 0.157189625326 0.157189625326
## features.properties.sum.70 0.0937245066846 0.0937245066846
## features.properties.sum.71 0.128313247654 0.128313247654
## features.properties.sum.72 0.11302848218 0.11302848218
## features.properties.sum.73 0.0630994631392 0.0630994631392
## features.properties.sum.74 0.0559590444049 0.0559590444049
## features.properties.sum.75 0.0578071886107 0.0578071886107
## features.properties.sum.76 0.0229483888793 0.0229483888793
## features.properties.sum.77 0.0126627103916 0.0126627103916
## features.properties.sum.78 0.0139952832236 0.0139952832236
## features.properties.sum.79 0.0548194450787 0.0548194450787
## features.properties.sum.80 0.224397707218 0.224397707218
## features.properties.sum.81 0.0476141336392 0.0476141336392
## features.properties.sum.82 0.0443321397721 0.0443321397721
## features.properties.sum.83 0.0490302735314 0.0490302735314
## features.properties.sum.84 0.0920502698629 0.0920502698629
## features.properties.sum.85 0.343230877798 0.343230877798
## features.properties.sum.86 0.0303463589963 0.0303463589963
## features.properties.sum.87 0.0304940656141 0.0304940656141
## features.properties.sum.88 0.0301132769341 0.0301132769341
## features.properties.sum.89 0.0145008622673 0.0145008622673
## features.properties.sum.90 0.0173113872952 0.0173113872952
Podemos obtener todos los glaciares de Chile y podemos obtener sus areas. A travaés de nuestros proceso de clasificación hemos podido determinar cantidades que debiesen ser glaciares en color rojo y cantidades que no son glaciares con valor de 1. Nuestro proceso de analisis nos llevo a la obtencion de estas cantidades cuyas magnitudes desconocemos. Pero lo anterior no es problema. Debemos seguir el siguiente procedimiento:
Calcular el porcentaje de rojo que hay dentro de la relación rojo-verde
Llamemos el porcentaje del punto 1 β.
debemos calcular el porcentaje que β representa en el area_Km2(shp). de cada glaciar.
\[ {\%rojo \over x} = {(rojo +verde) \over 100 } \]
Lo que nos interesa es obtener la superficie glaciar dentro de cada glaciar.
\[ { \%superficie\_roja \over 100} = {\%rojo \over region\_glaciar }\]
data4$porcentaje_rojo <- (100*as.numeric(data4$rojo)) / (as.numeric(data4$rojo) + as.numeric(data4$verde))
data4$porcentaje_area_glaciar <- (data4$porcentaje_rojo * as.numeric(data4$`area_Km2(shp)`)) / 100
data4
## codigo_gla rojo verde
## features.properties.sum CL101044025 49.2274509803922 0
## features.properties.sum.1 CL101044018 10.2509803921569 102.247058823529
## features.properties.sum.2 CL101044017 2 124.862745098039
## features.properties.sum.3 CL101044019 0 97.7882352941177
## features.properties.sum.4 CL101044016 1.05098039215686 74.0392156862745
## features.properties.sum.5 CL101044015 0 34.8666666666667
## features.properties.sum.6 CL101044014 1.02352941176471 29.9019607843137
## features.properties.sum.7 CL101044013 0 40.1607843137255
## features.properties.sum.8 CL101044012 0 13.8980392156863
## features.properties.sum.9 CL101044011 0 265.913725490196
## features.properties.sum.10 CL101044010 0 5.82352941176471
## features.properties.sum.11 CL101044007 0 57.3803921568627
## features.properties.sum.12 CL101044008 0 201.643137254902
## features.properties.sum.13 CL101044006 0 221.235294117647
## features.properties.sum.14 CL101042002 0 81.0078431372549
## features.properties.sum.15 CL101042001 2.75294117647059 77.1843137254902
## features.properties.sum.16 CL101042003 0 63.2117647058824
## features.properties.sum.17 CL101042005 1.00392156862745 32.878431372549
## features.properties.sum.18 CL101042004 0 20.121568627451
## features.properties.sum.19 CL101610012 0 154.098039215686
## features.properties.sum.20 CL101610013 0 110.176470588235
## features.properties.sum.21 CL101610011 0 6.61960784313725
## features.properties.sum.22 CL101610010 0 94.2666666666667
## features.properties.sum.23 CL101610009 0 72.7764705882353
## features.properties.sum.24 CL101610008 0 41.6274509803922
## features.properties.sum.25 CL101610005 0 78.9098039215686
## features.properties.sum.26 CL101610004 0 63.0549019607843
## features.properties.sum.27 CL101610002 0 113.752941176471
## features.properties.sum.28 CL101610003 0 97.6431372549019
## features.properties.sum.29 CL101610001 0 114.43137254902
## features.properties.sum.30 CL101611002 0 159.976470588235
## features.properties.sum.31 CL101720004 0 30.7843137254902
## features.properties.sum.32 CL101720003 0 129
## features.properties.sum.33 CL101720001 0 9.56470588235294
## features.properties.sum.34 CL101720002 0 73.6862745098039
## features.properties.sum.35 CL101720008 0 188.541176470588
## features.properties.sum.36 CL101720005 0 22.3333333333333
## features.properties.sum.37 CL101720006 0 15.2666666666667
## features.properties.sum.38 CL101720009 0 13.2156862745098
## features.properties.sum.39 CL101720007 0 9.65490196078431
## features.properties.sum.40 CL101730001 0 129.050980392157
## features.properties.sum.41 CL101730002 0 35.5254901960784
## features.properties.sum.42 CL101730009 0 21.278431372549
## features.properties.sum.43 CL101730008 0 19.0705882352941
## features.properties.sum.44 CL101730011 0 53.4156862745098
## features.properties.sum.45 CL101730012 0.203921568627451 72.8862745098039
## features.properties.sum.46 CL101730013 0 63.9176470588235
## features.properties.sum.47 CL101730010 0 7.74117647058823
## features.properties.sum.48 CL101730014 0 144.137254901961
## features.properties.sum.49 CL101730016 0 25.1607843137255
## features.properties.sum.50 CL101730017 0 9.94901960784314
## features.properties.sum.51 CL101730015 0 9.06666666666666
## features.properties.sum.52 CL101730018 0 11.5607843137255
## features.properties.sum.53 CL101730004 0 33.2745098039216
## features.properties.sum.54 CL101730003 0 79.1529411764706
## features.properties.sum.55 CL101730006 0 27.6901960784314
## features.properties.sum.56 CL101730007 0 24.5843137254902
## features.properties.sum.57 CL101730005 0 13.2509803921569
## features.properties.sum.58 CL101044001 2 47.4078431372549
## features.properties.sum.59 CL101044002 0 27.0235294117647
## features.properties.sum.60 CL101044003 0.156862745098039 97.0078431372549
## features.properties.sum.61 CL101044004 0 31.4117647058824
## features.properties.sum.62 CL101044009 0 13.6901960784314
## features.properties.sum.63 CL101044005 3.29411764705882 18.8235294117647
## features.properties.sum.64 CL101040008 0 51.1137254901961
## features.properties.sum.65 CL101611001 0 128.905882352941
## features.properties.sum.66 CL101610024 0 53.6862745098039
## features.properties.sum.67 CL101610023 0 256.78431372549
## features.properties.sum.68 CL101610022 0 229.074509803922
## features.properties.sum.69 CL101610021 0 180.870588235294
## features.properties.sum.70 CL101610020 0 106.007843137255
## features.properties.sum.71 CL101610018 0 145.83137254902
## features.properties.sum.72 CL101610017 0 119.317647058824
## features.properties.sum.73 CL101610016 0 63.3176470588235
## features.properties.sum.74 CL101040006 0 53.2901960784314
## features.properties.sum.75 CL101040005 0 55.3372549019608
## features.properties.sum.76 CL101040004 3.6078431372549 9.25882352941177
## features.properties.sum.77 CL101040003 0 7.43529411764706
## features.properties.sum.78 CL101610015 0 9.92156862745098
## features.properties.sum.79 CL101610014 0 59.9921568627451
## features.properties.sum.80 CL101610019 0 253.152941176471
## features.properties.sum.81 CL101040002 0 50.8196078431372
## features.properties.sum.82 CL101040007 3.75686274509804 45.8470588235294
## features.properties.sum.83 CL101040001 23.7176470588235 24.756862745098
## features.properties.sum.84 CL101040009 45.1254901960784 54.4
## features.properties.sum.85 CL101044024 410.019607843137 0.0549019607843137
## features.properties.sum.86 CL101070001 18.7686274509804 10.3019607843137
## features.properties.sum.87 CL101044020 30.8039215686274 0
## features.properties.sum.88 CL101044022 24.9058823529412 0
## features.properties.sum.89 CL101044021 15.3411764705882 0
## features.properties.sum.90 CL101044023 11.956862745098 0
## area_Km2(shp) NA porcentaje_rojo
## features.properties.sum 0.0397270010711 0.0397270010711 100.0000000
## features.properties.sum.1 0.100876482862 0.100876482862 9.1121414
## features.properties.sum.2 0.109852809052 0.109852809052 1.5765070
## features.properties.sum.3 0.0873709651722 0.0873709651722 0.0000000
## features.properties.sum.4 0.0639482581884 0.0639482581884 1.3996240
## features.properties.sum.5 0.0390825631323 0.0390825631323 0.0000000
## features.properties.sum.6 0.0327605622869 0.0327605622869 3.3096627
## features.properties.sum.7 0.0382199791074 0.0382199791074 0.0000000
## features.properties.sum.8 0.0167628398049 0.0167628398049 0.0000000
## features.properties.sum.9 0.234736140147 0.234736140147 0.0000000
## features.properties.sum.10 0.0123072515574 0.0123072515574 0.0000000
## features.properties.sum.11 0.0490761861993 0.0490761861993 0.0000000
## features.properties.sum.12 0.181770894446 0.181770894446 0.0000000
## features.properties.sum.13 0.187241197168 0.187241197168 0.0000000
## features.properties.sum.14 0.0822324117868 0.0822324117868 0.0000000
## features.properties.sum.15 0.0811335051897 0.0811335051897 3.4438776
## features.properties.sum.16 0.0517317014976 0.0517317014976 0.0000000
## features.properties.sum.17 0.0342342838388 0.0342342838388 2.9629630
## features.properties.sum.18 0.025537434093 0.025537434093 0.0000000
## features.properties.sum.19 0.14556645363 0.14556645363 0.0000000
## features.properties.sum.20 0.0969989514597 0.0969989514597 0.0000000
## features.properties.sum.21 0.0133418051918 0.0133418051918 0.0000000
## features.properties.sum.22 0.0876500187874 0.0876500187874 0.0000000
## features.properties.sum.23 0.0722716222512 0.0722716222512 0.0000000
## features.properties.sum.24 0.0460606415757 0.0460606415757 0.0000000
## features.properties.sum.25 0.0863192881262 0.0863192881262 0.0000000
## features.properties.sum.26 0.0786716671606 0.0786716671606 0.0000000
## features.properties.sum.27 0.0996942476728 0.0996942476728 0.0000000
## features.properties.sum.28 0.0926249593749 0.0926249593749 0.0000000
## features.properties.sum.29 0.107310516435 0.107310516435 0.0000000
## features.properties.sum.30 0.125452215699 0.125452215699 0.0000000
## features.properties.sum.31 0.0370788979097 0.0370788979097 0.0000000
## features.properties.sum.32 0.121432954093 0.121432954093 0.0000000
## features.properties.sum.33 0.0156484103605 0.0156484103605 0.0000000
## features.properties.sum.34 0.0637414139919 0.0637414139919 0.0000000
## features.properties.sum.35 0.163304691787 0.163304691787 0.0000000
## features.properties.sum.36 0.0228456773695 0.0228456773695 0.0000000
## features.properties.sum.37 0.0161851633664 0.0161851633664 0.0000000
## features.properties.sum.38 0.0165129804368 0.0165129804368 0.0000000
## features.properties.sum.39 0.0198858464782 0.0198858464782 0.0000000
## features.properties.sum.40 0.121994691845 0.121994691845 0.0000000
## features.properties.sum.41 0.0391150993622 0.0391150993622 0.0000000
## features.properties.sum.42 0.0305984387632 0.0305984387632 0.0000000
## features.properties.sum.43 0.0225271588162 0.0225271588162 0.0000000
## features.properties.sum.44 0.0661863412709 0.0661863412709 0.0000000
## features.properties.sum.45 0.0641183674004 0.0641183674004 0.2789999
## features.properties.sum.46 0.0711972768362 0.0711972768362 0.0000000
## features.properties.sum.47 0.0127425943588 0.0127425943588 0.0000000
## features.properties.sum.48 0.130168840973 0.130168840973 0.0000000
## features.properties.sum.49 0.0425520003997 0.0425520003997 0.0000000
## features.properties.sum.50 0.0157886226892 0.0157886226892 0.0000000
## features.properties.sum.51 0.0155196563794 0.0155196563794 0.0000000
## features.properties.sum.52 0.0181153020415 0.0181153020415 0.0000000
## features.properties.sum.53 0.0346999506794 0.0346999506794 0.0000000
## features.properties.sum.54 0.071272988267 0.071272988267 0.0000000
## features.properties.sum.55 0.0311922006569 0.0311922006569 0.0000000
## features.properties.sum.56 0.0269613307305 0.0269613307305 0.0000000
## features.properties.sum.57 0.0182961256272 0.0182961256272 0.0000000
## features.properties.sum.58 0.0474476041426 0.0474476041426 4.0479403
## features.properties.sum.59 0.030925134966 0.030925134966 0.0000000
## features.properties.sum.60 0.0990839862833 0.0990839862833 0.1614400
## features.properties.sum.61 0.0316396276002 0.0316396276002 0.0000000
## features.properties.sum.62 0.0151640809662 0.0151640809662 0.0000000
## features.properties.sum.63 0.0261707721535 0.0261707721535 14.8936170
## features.properties.sum.64 0.0531454414338 0.0531454414338 0.0000000
## features.properties.sum.65 0.108143702435 0.108143702435 0.0000000
## features.properties.sum.66 0.0585930577914 0.0585930577914 0.0000000
## features.properties.sum.67 0.232784007153 0.232784007153 0.0000000
## features.properties.sum.68 0.189817275455 0.189817275455 0.0000000
## features.properties.sum.69 0.157189625326 0.157189625326 0.0000000
## features.properties.sum.70 0.0937245066846 0.0937245066846 0.0000000
## features.properties.sum.71 0.128313247654 0.128313247654 0.0000000
## features.properties.sum.72 0.11302848218 0.11302848218 0.0000000
## features.properties.sum.73 0.0630994631392 0.0630994631392 0.0000000
## features.properties.sum.74 0.0559590444049 0.0559590444049 0.0000000
## features.properties.sum.75 0.0578071886107 0.0578071886107 0.0000000
## features.properties.sum.76 0.0229483888793 0.0229483888793 28.0402316
## features.properties.sum.77 0.0126627103916 0.0126627103916 0.0000000
## features.properties.sum.78 0.0139952832236 0.0139952832236 0.0000000
## features.properties.sum.79 0.0548194450787 0.0548194450787 0.0000000
## features.properties.sum.80 0.224397707218 0.224397707218 0.0000000
## features.properties.sum.81 0.0476141336392 0.0476141336392 0.0000000
## features.properties.sum.82 0.0443321397721 0.0443321397721 7.5737212
## features.properties.sum.83 0.0490302735314 0.0490302735314 48.9280803
## features.properties.sum.84 0.0920502698629 0.0920502698629 45.3406360
## features.properties.sum.85 0.343230877798 0.343230877798 99.9866117
## features.properties.sum.86 0.0303463589963 0.0303463589963 64.5622555
## features.properties.sum.87 0.0304940656141 0.0304940656141 100.0000000
## features.properties.sum.88 0.0301132769341 0.0301132769341 100.0000000
## features.properties.sum.89 0.0145008622673 0.0145008622673 100.0000000
## features.properties.sum.90 0.0173113872952 0.0173113872952 100.0000000
## porcentaje_area_glaciar
## features.properties.sum 0.0397270011
## features.properties.sum.1 0.0091920077
## features.properties.sum.2 0.0017318372
## features.properties.sum.3 0.0000000000
## features.properties.sum.4 0.0008950352
## features.properties.sum.5 0.0000000000
## features.properties.sum.6 0.0010842641
## features.properties.sum.7 0.0000000000
## features.properties.sum.8 0.0000000000
## features.properties.sum.9 0.0000000000
## features.properties.sum.10 0.0000000000
## features.properties.sum.11 0.0000000000
## features.properties.sum.12 0.0000000000
## features.properties.sum.13 0.0000000000
## features.properties.sum.14 0.0000000000
## features.properties.sum.15 0.0027941386
## features.properties.sum.16 0.0000000000
## features.properties.sum.17 0.0010143492
## features.properties.sum.18 0.0000000000
## features.properties.sum.19 0.0000000000
## features.properties.sum.20 0.0000000000
## features.properties.sum.21 0.0000000000
## features.properties.sum.22 0.0000000000
## features.properties.sum.23 0.0000000000
## features.properties.sum.24 0.0000000000
## features.properties.sum.25 0.0000000000
## features.properties.sum.26 0.0000000000
## features.properties.sum.27 0.0000000000
## features.properties.sum.28 0.0000000000
## features.properties.sum.29 0.0000000000
## features.properties.sum.30 0.0000000000
## features.properties.sum.31 0.0000000000
## features.properties.sum.32 0.0000000000
## features.properties.sum.33 0.0000000000
## features.properties.sum.34 0.0000000000
## features.properties.sum.35 0.0000000000
## features.properties.sum.36 0.0000000000
## features.properties.sum.37 0.0000000000
## features.properties.sum.38 0.0000000000
## features.properties.sum.39 0.0000000000
## features.properties.sum.40 0.0000000000
## features.properties.sum.41 0.0000000000
## features.properties.sum.42 0.0000000000
## features.properties.sum.43 0.0000000000
## features.properties.sum.44 0.0000000000
## features.properties.sum.45 0.0001788902
## features.properties.sum.46 0.0000000000
## features.properties.sum.47 0.0000000000
## features.properties.sum.48 0.0000000000
## features.properties.sum.49 0.0000000000
## features.properties.sum.50 0.0000000000
## features.properties.sum.51 0.0000000000
## features.properties.sum.52 0.0000000000
## features.properties.sum.53 0.0000000000
## features.properties.sum.54 0.0000000000
## features.properties.sum.55 0.0000000000
## features.properties.sum.56 0.0000000000
## features.properties.sum.57 0.0000000000
## features.properties.sum.58 0.0019206507
## features.properties.sum.59 0.0000000000
## features.properties.sum.60 0.0001599612
## features.properties.sum.61 0.0000000000
## features.properties.sum.62 0.0000000000
## features.properties.sum.63 0.0038977746
## features.properties.sum.64 0.0000000000
## features.properties.sum.65 0.0000000000
## features.properties.sum.66 0.0000000000
## features.properties.sum.67 0.0000000000
## features.properties.sum.68 0.0000000000
## features.properties.sum.69 0.0000000000
## features.properties.sum.70 0.0000000000
## features.properties.sum.71 0.0000000000
## features.properties.sum.72 0.0000000000
## features.properties.sum.73 0.0000000000
## features.properties.sum.74 0.0000000000
## features.properties.sum.75 0.0000000000
## features.properties.sum.76 0.0064347814
## features.properties.sum.77 0.0000000000
## features.properties.sum.78 0.0000000000
## features.properties.sum.79 0.0000000000
## features.properties.sum.80 0.0000000000
## features.properties.sum.81 0.0000000000
## features.properties.sum.82 0.0033575927
## features.properties.sum.83 0.0239895716
## features.properties.sum.84 0.0417361778
## features.properties.sum.85 0.3431849251
## features.properties.sum.86 0.0195922938
## features.properties.sum.87 0.0304940656
## features.properties.sum.88 0.0301132769
## features.properties.sum.89 0.0145008623
## features.properties.sum.90 0.0173113873
Logica de la informacion temporal:
region_tara <- st_read("rrss/Region_01.shp",
quiet = TRUE) %>%
sf_as_ee()
glaciar_tara <- st_read("GlaciaresxRegion/Simple_TARAPACA.shp",
quiet = TRUE) %>%
sf_as_ee()
fn_cart <- function(a,m){
i_cuatrimestre <- switch(m, "01","05","09")
f_cuatrimestre <- switch(m, "04","08","12")
fecha_1 <- paste("20",a,"-",i_cuatrimestre,"-01", sep = "")
fecha_2 <- paste("20",a,"-",f_cuatrimestre,"-01", sep = "")
tara <- region_tara$geometry()
start <- ee$Date(fecha_1)
finish <- ee$Date(fecha_2)
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(tara)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
getNDGI <- function(image)
{
image$normalizedDifference(c("B4", "B3")) > 0
}
ndgi <- getNDGI(first)
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
glaciar_tara <- glaciar_tara$geometry()
glaciares_adm_con_ngvi <- ndgi$clip(glaciar_tara)
tara_sin_glacia <- tara$difference(glaciar_tara, ee$ErrorMargin(1))
ndvi_tarapaca_sin_glaciares <- ndgi$clip(tara_sin_glacia)
limites_glaciares_con_rasters <- ndgi$clip(glaciar_tara)
# region_arica <- st_read("Regiones_separadas/Region_15.shp", quiet = TRUE)
# region_arica
muestras_in <- ndgi$sampleRegions(
collection = ee$Feature(glaciar_tara),
scale = 100,
tileScale = 16,
geometries = TRUE
)
muestras_in_gee_rojas = muestras_in$filter(ee$Filter$eq('nd', 0))
ndvi_tara_sin_glaciares <- ndgi$clip(tara_sin_glacia)
muestras_in <- ndgi$sampleRegions(
collection = ee$Feature(ndvi_tara_sin_glaciares),
scale = 10000,
tileScale = 16,
geometries = TRUE
)
muestras_out_gee_verdes = muestras_in$filter(ee$Filter$eq('nd', 1))
union_total <- muestras_out_gee_verdes$merge(muestras_in_gee_rojas)
region_arica <- st_read("rrss/Region_01.shp",
quiet = TRUE) %>%
sf_as_ee()
arica <- region_arica$geometry()
start <- ee$Date(fecha_1)
finish <- ee$Date(fecha_2)
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(arica)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# Use these bands for prediction.
bands <- c("B2", "B3", "B4", "B8")
# This property of the table stores the land cover labels.
label <- "nd"
# Overlay the points on the imagery to get training.
training <- first$select(bands)$sampleRegions(
collection = union_total,
properties = list(label),
scale = 10
)
# Train a CART classifier with default parameters.
trained <- ee$Classifier$smileRandomForest(10)$train(training, label, bands)
# Classify the image with the same bands used for training.
classified1 <- first$select(bands)$classify(trained)
periodo <- paste(fecha_1," / ",fecha_2," ", sep = "")
print(periodo)
###################################################################
mask_0 <- read_sf("GlaciaresxRegion/Simple_TARAPACA.shp")
reg_15_2 <- mask_0 %>% dplyr::select(COD_GLA,AREA_Km2)
varia <- reg_15_2 %>%
sf_as_ee()
region_0 <- varia$geometry()
sale_4 <- classified1$clip(region_0)
puntos_r <- sale_4$select('classification')$eq(0)
areas_rojas = puntos_r$reduceRegions(
reducer= ee$Reducer$sum(),
collection= varia,
scale= 30
)
rojas <- areas_rojas$getInfo()
rojas1 <- as.data.frame(rojas)
puntos_v <- sale_4$select('classification')$eq(1)
areas_verdes = puntos_v$reduceRegions(
reducer= ee$Reducer$sum(),
collection= varia,
scale= 30
)
verdes <- areas_verdes$getInfo()
verdes1 <- as.data.frame(verdes)
###########
r_v <- rbind(colnames(rojas1),rojas1,verdes1)
r_v <- r_v[1:4,]
r_v <- r_v[-3,]
r_v <- t(r_v)
r_v <- as.data.frame(r_v)
names(r_v)[1] <- "col1"
names(r_v)[2] <- "col2"
names(r_v)[3] <- "col3"
r_v$col4 <- r_v$col3
r_v$col5 <- r_v$col3
###########
data1 <- filter(r_v, grepl("features.properties.COD_GLA",col1))
data1 <- as.data.frame(data1[,2])
data2 <- filter(r_v, grepl("features.properties.sum",col1))
data2 <- as.data.frame(data2[,c(2,3)])
data3 <- filter(r_v, grepl("features.properties.AREA_Km2",col1))
data3 <- as.data.frame(data3[,c(2,3)])
data4 <- cbind(data1,data2,data3)
data4 <- data4[,-c(4)]
colnames(data4) <- c("codigo_gla", "rojo", "verde", "area_Km2(shp)")
nombre <- paste("arica_",fecha_1,"_",fecha_2,".xlsx", sep = "")
data4$porcentaje_rojo <- (100*as.numeric(data4$rojo)) / (as.numeric(data4$rojo) + as.numeric(data4$verde))
data4$porcentaje_area_glaciar <- (data4$porcentaje_rojo * as.numeric(data4$`area_Km2(shp)`)) / 100
data4$fecha <- periodo
write_xlsx(data4,nombre)
}
# for (a in 18:18) {
# for (m in 2:3) {
#
# fn_cart(a,m)
#
# }
# }
Vamos a exponer la data de dos cuatrimetres, el segundo y el tercero ambos para el año 2018
segundo_cuatri_18 <- fn_cart(18,2)
## Warning: Ops.ee.image.Image will be deprecated in rgee v.1.1.0. Please install
## rgeeExtra (https://github.com/r-earthengine/rgeeExtra). Deeply sorry for the
## inconveniences.
## [1] "2018-05-01 / 2018-08-01 "
tercer_cuatri_18 <- fn_cart(18,3)
## Warning: Ops.ee.image.Image will be deprecated in rgee v.1.1.0. Please install
## rgeeExtra (https://github.com/r-earthengine/rgeeExtra). Deeply sorry for the
## inconveniences.
## [1] "2018-09-01 / 2018-12-01 "
library(readxl)
a <- read_xlsx("arica_2018-09-01_2018-12-01.xlsx")
b <- read_xlsx("arica_2018-05-01_2018-08-01.xlsx")
ab <- rbind(b,a)
write_xlsx(ab,"ab.xlsx")
kbl(ab) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
codigo_gla | rojo | verde | area_Km2(shp) | porcentaje_rojo | porcentaje_area_glaciar | fecha |
---|---|---|---|---|---|---|
CL101044025 | 0.666666666666667 | 48.5607843137255 | 0.0397270010711 | 1.3542579 | 0.0005380 | 2018-05-01 / 2018-08-01 |
CL101044018 | 14.8274509803922 | 100.4 | 0.100876482862 | 12.8679849 | 0.0129808 | 2018-05-01 / 2018-08-01 |
CL101044017 | 31.8039215686274 | 100.039215686275 | 0.109852809052 | 24.1225461 | 0.0264993 | 2018-05-01 / 2018-08-01 |
CL101044019 | 37.2980392156863 | 65.1764705882353 | 0.0873709651722 | 36.3973824 | 0.0318007 | 2018-05-01 / 2018-08-01 |
CL101044016 | 12.3058823529412 | 66.5803921568627 | 0.0639482581884 | 15.5995228 | 0.0099756 | 2018-05-01 / 2018-08-01 |
CL101044015 | 6.98039215686275 | 30.4666666666667 | 0.0390825631323 | 18.6406954 | 0.0072853 | 2018-05-01 / 2018-08-01 |
CL101044014 | 1.61176470588235 | 28.8 | 0.0327605622869 | 5.2998066 | 0.0017362 | 2018-05-01 / 2018-08-01 |
CL101044013 | 4.10588235294118 | 36.0549019607843 | 0.0382199791074 | 10.2236110 | 0.0039075 | 2018-05-01 / 2018-08-01 |
CL101044012 | 7.16470588235294 | 8.88627450980392 | 0.0167628398049 | 44.6371854 | 0.0074825 | 2018-05-01 / 2018-08-01 |
CL101044011 | 47.1137254901961 | 228.541176470588 | 0.234736140147 | 17.0915609 | 0.0401201 | 2018-05-01 / 2018-08-01 |
CL101044010 | 1.21176470588235 | 5.6078431372549 | 0.0123072515574 | 17.7688327 | 0.0021869 | 2018-05-01 / 2018-08-01 |
CL101044007 | 25.3529411764706 | 33.3764705882353 | 0.0490761861993 | 43.1690705 | 0.0211857 | 2018-05-01 / 2018-08-01 |
CL101044008 | 76.5843137254902 | 134.070588235294 | 0.181770894446 | 36.3553437 | 0.0660834 | 2018-05-01 / 2018-08-01 |
CL101044006 | 47.4509803921569 | 179.592156862745 | 0.187241197168 | 20.8995440 | 0.0391326 | 2018-05-01 / 2018-08-01 |
CL101042002 | 1.61176470588235 | 79.3960784313725 | 0.0822324117868 | 1.9896403 | 0.0016361 | 2018-05-01 / 2018-08-01 |
CL101042001 | 3.50196078431373 | 78.0705882352941 | 0.0811335051897 | 4.2930628 | 0.0034831 | 2018-05-01 / 2018-08-01 |
CL101042003 | 8.11764705882353 | 55.4 | 0.0517317014976 | 12.7801445 | 0.0066114 | 2018-05-01 / 2018-08-01 |
CL101042005 | 2.22745098039216 | 33.0588235294118 | 0.0342342838388 | 6.3125139 | 0.0021610 | 2018-05-01 / 2018-08-01 |
CL101042004 | 1.03529411764706 | 19.121568627451 | 0.025537434093 | 5.1361868 | 0.0013117 | 2018-05-01 / 2018-08-01 |
CL101610012 | 11.6745098039216 | 144.423529411765 | 0.14556645363 | 7.4789599 | 0.0108869 | 2018-05-01 / 2018-08-01 |
CL101610013 | 1 | 108.176470588235 | 0.0969989514597 | 0.9159483 | 0.0008885 | 2018-05-01 / 2018-08-01 |
CL101610011 | 0 | 6.61960784313725 | 0.0133418051918 | 0.0000000 | 0.0000000 | 2018-05-01 / 2018-08-01 |
CL101610010 | 0 | 92.635294117647 | 0.0876500187874 | 0.0000000 | 0.0000000 | 2018-05-01 / 2018-08-01 |
CL101610009 | 0 | 72.7764705882353 | 0.0722716222512 | 0.0000000 | 0.0000000 | 2018-05-01 / 2018-08-01 |
CL101610008 | 0 | 41.6274509803922 | 0.0460606415757 | 0.0000000 | 0.0000000 | 2018-05-01 / 2018-08-01 |
CL101610005 | 0 | 78.9098039215686 | 0.0863192881262 | 0.0000000 | 0.0000000 | 2018-05-01 / 2018-08-01 |
CL101610004 | 0 | 63.0549019607843 | 0.0786716671606 | 0.0000000 | 0.0000000 | 2018-05-01 / 2018-08-01 |
CL101610002 | 3.47843137254902 | 113.752941176471 | 0.0996942476728 | 2.9671506 | 0.0029581 | 2018-05-01 / 2018-08-01 |
CL101610003 | 0 | 97.6431372549019 | 0.0926249593749 | 0.0000000 | 0.0000000 | 2018-05-01 / 2018-08-01 |
CL101610001 | 2.25882352941176 | 115.494117647059 | 0.107310516435 | 1.9182736 | 0.0020585 | 2018-05-01 / 2018-08-01 |
CL101611002 | 13.2980392156863 | 149.203921568627 | 0.125452215699 | 8.1833100 | 0.0102661 | 2018-05-01 / 2018-08-01 |
CL101720004 | 17.9490196078431 | 15.0549019607843 | 0.0370788979097 | 54.3845057 | 0.0201652 | 2018-05-01 / 2018-08-01 |
CL101720003 | 2.16078431372549 | 127.317647058824 | 0.121432954093 | 1.6688373 | 0.0020265 | 2018-05-01 / 2018-08-01 |
CL101720001 | 1.93725490196078 | 8.30588235294118 | 0.0156484103605 | 18.9127106 | 0.0029595 | 2018-05-01 / 2018-08-01 |
CL101720002 | 0.125490196078431 | 73.5607843137255 | 0.0637414139919 | 0.1703034 | 0.0001086 | 2018-05-01 / 2018-08-01 |
CL101720008 | 12.8588235294118 | 180.247058823529 | 0.163304691787 | 6.6589497 | 0.0108744 | 2018-05-01 / 2018-08-01 |
CL101720005 | 5.58823529411765 | 17.7450980392157 | 0.0228456773695 | 23.9495798 | 0.0054714 | 2018-05-01 / 2018-08-01 |
CL101720006 | 0.403921568627451 | 14.2588235294118 | 0.0161851633664 | 2.7547473 | 0.0004459 | 2018-05-01 / 2018-08-01 |
CL101720009 | 4.82352941176471 | 10.3921568627451 | 0.0165129804368 | 31.7010309 | 0.0052348 | 2018-05-01 / 2018-08-01 |
CL101720007 | 6.84705882352941 | 2.8 | 0.0198858464782 | 70.9756098 | 0.0141141 | 2018-05-01 / 2018-08-01 |
CL101730001 | 32.1019607843137 | 100.054901960784 | 0.121994691845 | 24.2908012 | 0.0296335 | 2018-05-01 / 2018-08-01 |
CL101730002 | 35.5254901960784 | 3 | 0.0391150993622 | 92.2129479 | 0.0360692 | 2018-05-01 / 2018-08-01 |
CL101730009 | 1.26274509803922 | 20.2313725490196 | 0.0305984387632 | 5.8748404 | 0.0017976 | 2018-05-01 / 2018-08-01 |
CL101730008 | 10.7490196078431 | 11.2862745098039 | 0.0225271588162 | 48.7809219 | 0.0109890 | 2018-05-01 / 2018-08-01 |
CL101730011 | 21.843137254902 | 36.3098039215686 | 0.0661863412709 | 37.5615348 | 0.0248606 | 2018-05-01 / 2018-08-01 |
CL101730012 | 22.8156862745098 | 47.9254901960784 | 0.0641183674004 | 32.2523421 | 0.0206797 | 2018-05-01 / 2018-08-01 |
CL101730013 | 34.3607843137255 | 35.3098039215686 | 0.0711972768362 | 49.3189238 | 0.0351137 | 2018-05-01 / 2018-08-01 |
CL101730010 | 4.42745098039216 | 3.31372549019608 | 0.0127425943588 | 57.1935157 | 0.0072879 | 2018-05-01 / 2018-08-01 |
CL101730014 | 62.5803921568628 | 95.2039215686275 | 0.130168840973 | 39.6619858 | 0.0516275 | 2018-05-01 / 2018-08-01 |
CL101730016 | 9.5921568627451 | 16.5686274509804 | 0.0425520003997 | 36.6661670 | 0.0156022 | 2018-05-01 / 2018-08-01 |
CL101730017 | 3.30196078431373 | 7.6156862745098 | 0.0157886226892 | 30.2442529 | 0.0047752 | 2018-05-01 / 2018-08-01 |
CL101730015 | 0 | 9.06666666666666 | 0.0155196563794 | 0.0000000 | 0.0000000 | 2018-05-01 / 2018-08-01 |
CL101730018 | 2.67058823529412 | 8.88235294117647 | 0.0181153020415 | 23.1160896 | 0.0041875 | 2018-05-01 / 2018-08-01 |
CL101730004 | 14.5333333333333 | 21.7960784313725 | 0.0346999506794 | 40.0043178 | 0.0138815 | 2018-05-01 / 2018-08-01 |
CL101730003 | 31.8588235294118 | 53.9921568627451 | 0.071272988267 | 37.1094464 | 0.0264490 | 2018-05-01 / 2018-08-01 |
CL101730006 | 5.6156862745098 | 22.0745098039216 | 0.0311922006569 | 20.2804135 | 0.0063259 | 2018-05-01 / 2018-08-01 |
CL101730007 | 10.2549019607843 | 14.843137254902 | 0.0269613307305 | 40.8593750 | 0.0110162 | 2018-05-01 / 2018-08-01 |
CL101730005 | 0 | 13.2509803921569 | 0.0182961256272 | 0.0000000 | 0.0000000 | 2018-05-01 / 2018-08-01 |
CL101044001 | 0 | 49.4078431372549 | 0.0474476041426 | 0.0000000 | 0.0000000 | 2018-05-01 / 2018-08-01 |
CL101044002 | 2.73333333333333 | 24.2901960784314 | 0.030925134966 | 10.1146423 | 0.0031280 | 2018-05-01 / 2018-08-01 |
CL101044003 | 7.8156862745098 | 89.3568627450981 | 0.0990839862833 | 8.0431010 | 0.0079694 | 2018-05-01 / 2018-08-01 |
CL101044004 | 2.23137254901961 | 30.1803921568627 | 0.0316396276002 | 6.8844525 | 0.0021782 | 2018-05-01 / 2018-08-01 |
CL101044009 | 0.470588235294118 | 13.6901960784314 | 0.0151640809662 | 3.3231792 | 0.0005039 | 2018-05-01 / 2018-08-01 |
CL101044005 | 0 | 22.1176470588235 | 0.0261707721535 | 0.0000000 | 0.0000000 | 2018-05-01 / 2018-08-01 |
CL101040008 | 27.3333333333333 | 23.7803921568627 | 0.0531454414338 | 53.4755255 | 0.0284198 | 2018-05-01 / 2018-08-01 |
CL101611001 | 5.51764705882353 | 126.678431372549 | 0.108143702435 | 4.1738357 | 0.0045137 | 2018-05-01 / 2018-08-01 |
CL101610024 | 18.6392156862745 | 39.5490196078431 | 0.0585930577914 | 32.0326190 | 0.0187689 | 2018-05-01 / 2018-08-01 |
CL101610023 | 44.5764705882353 | 223.388235294118 | 0.232784007153 | 16.6352022 | 0.0387241 | 2018-05-01 / 2018-08-01 |
CL101610022 | 102.454901960784 | 142.329411764706 | 0.189817275455 | 41.8551746 | 0.0794484 | 2018-05-01 / 2018-08-01 |
CL101610021 | 67.7450980392157 | 121.549019607843 | 0.157189625326 | 35.7882743 | 0.0562555 | 2018-05-01 / 2018-08-01 |
CL101610020 | 44.5921568627451 | 67.6352941176471 | 0.0937245066846 | 39.7337340 | 0.0372402 | 2018-05-01 / 2018-08-01 |
CL101610018 | 83.9176470588235 | 76.3960784313725 | 0.128313247654 | 52.3458904 | 0.0671667 | 2018-05-01 / 2018-08-01 |
CL101610017 | 42.9176470588235 | 81.8313725490196 | 0.11302848218 | 34.4031939 | 0.0388854 | 2018-05-01 / 2018-08-01 |
CL101610016 | 30.843137254902 | 36.1725490196078 | 0.0630994631392 | 46.0237580 | 0.0290407 | 2018-05-01 / 2018-08-01 |
CL101040006 | 21.2352941176471 | 37.0666666666667 | 0.0559590444049 | 36.4229502 | 0.0203819 | 2018-05-01 / 2018-08-01 |
CL101040005 | 7.51764705882353 | 49.4470588235294 | 0.0578071886107 | 13.1970260 | 0.0076288 | 2018-05-01 / 2018-08-01 |
CL101040004 | 2.42745098039216 | 10.7960784313725 | 0.0229483888793 | 18.3570581 | 0.0042126 | 2018-05-01 / 2018-08-01 |
CL101040003 | 3.58823529411765 | 3.84705882352941 | 0.0126627103916 | 48.2594937 | 0.0061110 | 2018-05-01 / 2018-08-01 |
CL101610015 | 3.21176470588235 | 7.48627450980392 | 0.0139952832236 | 30.0219941 | 0.0042017 | 2018-05-01 / 2018-08-01 |
CL101610014 | 31.2980392156863 | 32.078431372549 | 0.0548194450787 | 49.3843203 | 0.0270722 | 2018-05-01 / 2018-08-01 |
CL101610019 | 28.4941176470588 | 239.41568627451 | 0.224397707218 | 10.6357129 | 0.0238663 | 2018-05-01 / 2018-08-01 |
CL101040002 | 1 | 50.6627450980392 | 0.0476141336392 | 1.9356308 | 0.0009216 | 2018-05-01 / 2018-08-01 |
CL101040007 | 5.91372549019608 | 38.4470588235294 | 0.0443321397721 | 13.3309760 | 0.0059099 | 2018-05-01 / 2018-08-01 |
CL101040001 | 8.51764705882353 | 40.956862745098 | 0.0490302735314 | 17.2162334 | 0.0084412 | 2018-05-01 / 2018-08-01 |
CL101040009 | 0.286274509803922 | 101.360784313726 | 0.0920502698629 | 0.2816358 | 0.0002592 | 2018-05-01 / 2018-08-01 |
CL101044024 | 85.3019607843137 | 343.8 | 0.343230877798 | 19.8791822 | 0.0682315 | 2018-05-01 / 2018-08-01 |
CL101070001 | 0 | 0 | 0.0303463589963 | NA | NA | 2018-05-01 / 2018-08-01 |
CL101044020 | 6.49803921568627 | 25.4274509803922 | 0.0304940656141 | 20.3537649 | 0.0062067 | 2018-05-01 / 2018-08-01 |
CL101044022 | 0 | 24.9058823529412 | 0.0301132769341 | 0.0000000 | 0.0000000 | 2018-05-01 / 2018-08-01 |
CL101044021 | 0.258823529411765 | 15.0823529411765 | 0.0145008622673 | 1.6871166 | 0.0002446 | 2018-05-01 / 2018-08-01 |
CL101044023 | 0 | 11.956862745098 | 0.0173113872952 | 0.0000000 | 0.0000000 | 2018-05-01 / 2018-08-01 |
CL101044025 | 0 | 0 | 0.0397270010711 | NA | NA | 2018-09-01 / 2018-12-01 |
CL101044018 | 0 | 0 | 0.100876482862 | NA | NA | 2018-09-01 / 2018-12-01 |
CL101044017 | 0 | 0 | 0.109852809052 | NA | NA | 2018-09-01 / 2018-12-01 |
CL101044019 | 0 | 0 | 0.0873709651722 | NA | NA | 2018-09-01 / 2018-12-01 |
CL101044016 | 0 | 0 | 0.0639482581884 | NA | NA | 2018-09-01 / 2018-12-01 |
CL101044015 | 0 | 0 | 0.0390825631323 | NA | NA | 2018-09-01 / 2018-12-01 |
CL101044014 | 0 | 0 | 0.0327605622869 | NA | NA | 2018-09-01 / 2018-12-01 |
CL101044013 | 0 | 1.14509803921569 | 0.0382199791074 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101044012 | 0 | 13.8980392156863 | 0.0167628398049 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101044011 | 9.50588235294118 | 265.913725490196 | 0.234736140147 | 3.4514182 | 0.0081017 | 2018-09-01 / 2018-12-01 |
CL101044010 | 0 | 5.82352941176471 | 0.0123072515574 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101044007 | 0 | 57.3803921568627 | 0.0490761861993 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101044008 | 0 | 201.643137254902 | 0.181770894446 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101044006 | 4 | 221.235294117647 | 0.187241197168 | 1.7759206 | 0.0033253 | 2018-09-01 / 2018-12-01 |
CL101042002 | 0 | 81.0078431372549 | 0.0822324117868 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101042001 | 0.00392156862745098 | 79.9372549019608 | 0.0811335051897 | 0.0049056 | 0.0000040 | 2018-09-01 / 2018-12-01 |
CL101042003 | 0 | 63.2117647058824 | 0.0517317014976 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101042005 | 0 | 34.8823529411765 | 0.0342342838388 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101042004 | 0 | 20.121568627451 | 0.025537434093 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101610012 | 0 | 154.098039215686 | 0.14556645363 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101610013 | 0 | 110.176470588235 | 0.0969989514597 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101610011 | 1 | 6.61960784313725 | 0.0133418051918 | 13.1240350 | 0.0017510 | 2018-09-01 / 2018-12-01 |
CL101610010 | 0.0352941176470588 | 94.2666666666667 | 0.0876500187874 | 0.0374267 | 0.0000328 | 2018-09-01 / 2018-12-01 |
CL101610009 | 1.96470588235294 | 72.7764705882353 | 0.0722716222512 | 2.6286794 | 0.0018998 | 2018-09-01 / 2018-12-01 |
CL101610008 | 1.49019607843137 | 41.6274509803922 | 0.0460606415757 | 3.4561164 | 0.0015919 | 2018-09-01 / 2018-12-01 |
CL101610005 | 0 | 78.3176470588235 | 0.0863192881262 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101610004 | 0 | 63.0549019607843 | 0.0786716671606 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101610002 | 4.03529411764706 | 113.752941176471 | 0.0996942476728 | 3.4258889 | 0.0034154 | 2018-09-01 / 2018-12-01 |
CL101610003 | 0 | 97.6431372549019 | 0.0926249593749 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101610001 | 0 | 115.494117647059 | 0.107310516435 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101611002 | 30.6 | 120.443137254902 | 0.125452215699 | 20.2591131 | 0.0254155 | 2018-09-01 / 2018-12-01 |
CL101720004 | 0 | 30.7843137254902 | 0.0370788979097 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101720003 | 0 | 129 | 0.121432954093 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101720001 | 0 | 9.56470588235294 | 0.0156484103605 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101720002 | 0 | 73.6862745098039 | 0.0637414139919 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101720008 | 0 | 188.070588235294 | 0.163304691787 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101720005 | 0 | 22.3333333333333 | 0.0228456773695 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101720006 | 0 | 15.2666666666667 | 0.0161851633664 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101720009 | 0 | 13.2156862745098 | 0.0165129804368 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101720007 | 0 | 9.65490196078431 | 0.0198858464782 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101730001 | 0 | 129.050980392157 | 0.121994691845 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101730002 | 0.345098039215686 | 35.5254901960784 | 0.0391150993622 | 0.9620641 | 0.0003763 | 2018-09-01 / 2018-12-01 |
CL101730009 | 0.368627450980392 | 20.9098039215686 | 0.0305984387632 | 1.7323996 | 0.0005301 | 2018-09-01 / 2018-12-01 |
CL101730008 | 0 | 19.0705882352941 | 0.0225271588162 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101730011 | 0 | 53.4156862745098 | 0.0661863412709 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101730012 | 0 | 73.0901960784314 | 0.0641183674004 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101730013 | 0 | 63.9176470588235 | 0.0711972768362 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101730010 | 0 | 7.74117647058823 | 0.0127425943588 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101730014 | 1 | 144.137254901961 | 0.130168840973 | 0.6890030 | 0.0008969 | 2018-09-01 / 2018-12-01 |
CL101730016 | 0 | 25.1607843137255 | 0.0425520003997 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101730017 | 0 | 9.94901960784314 | 0.0157886226892 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101730015 | 0 | 9.06666666666666 | 0.0155196563794 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101730018 | 0 | 11.5607843137255 | 0.0181153020415 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101730004 | 0 | 33.2745098039216 | 0.0346999506794 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101730003 | 0 | 79.1529411764706 | 0.071272988267 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101730006 | 0 | 27.6901960784314 | 0.0311922006569 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101730007 | 0 | 24.5843137254902 | 0.0269613307305 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101730005 | 0 | 13.2509803921569 | 0.0182961256272 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101044001 | 0 | 49.4078431372549 | 0.0474476041426 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101044002 | 0 | 27.0235294117647 | 0.030925134966 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101044003 | 0 | 97.164705882353 | 0.0990839862833 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101044004 | 0 | 31.4117647058824 | 0.0316396276002 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101044009 | 0 | 13.6901960784314 | 0.0151640809662 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101044005 | 0 | 22.1176470588235 | 0.0261707721535 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101040008 | 1.86274509803922 | 51.1137254901961 | 0.0531454414338 | 3.5161744 | 0.0018687 | 2018-09-01 / 2018-12-01 |
CL101611001 | 0 | 128.905882352941 | 0.108143702435 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101610024 | 0 | 53.6862745098039 | 0.0585930577914 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101610023 | 1.21960784313726 | 254.564705882353 | 0.232784007153 | 0.4768110 | 0.0011099 | 2018-09-01 / 2018-12-01 |
CL101610022 | 2 | 229.074509803922 | 0.189817275455 | 0.8655217 | 0.0016429 | 2018-09-01 / 2018-12-01 |
CL101610021 | 5.35294117647059 | 180.870588235294 | 0.157189625326 | 2.8744709 | 0.0045184 | 2018-09-01 / 2018-12-01 |
CL101610020 | 15.8392156862745 | 106.007843137255 | 0.0937245066846 | 12.9992598 | 0.0121835 | 2018-09-01 / 2018-12-01 |
CL101610018 | 17.2156862745098 | 143.988235294118 | 0.128313247654 | 10.6794463 | 0.0137031 | 2018-09-01 / 2018-12-01 |
CL101610017 | 0 | 119.317647058824 | 0.11302848218 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101610016 | 2.66274509803922 | 63.3176470588235 | 0.0630994631392 | 4.0356612 | 0.0025465 | 2018-09-01 / 2018-12-01 |
CL101040006 | 11.1450980392157 | 53.2901960784314 | 0.0559590444049 | 17.2965735 | 0.0096790 | 2018-09-01 / 2018-12-01 |
CL101040005 | 7.9921568627451 | 55.3372549019608 | 0.0578071886107 | 12.6199765 | 0.0072953 | 2018-09-01 / 2018-12-01 |
CL101040004 | 3.95294117647059 | 13.2235294117647 | 0.0229483888793 | 23.0136986 | 0.0052813 | 2018-09-01 / 2018-12-01 |
CL101040003 | 0 | 7.43529411764706 | 0.0126627103916 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101610015 | 0 | 9.92156862745098 | 0.0139952832236 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101610014 | 0.874509803921569 | 59.0156862745098 | 0.0548194450787 | 1.4601886 | 0.0008005 | 2018-09-01 / 2018-12-01 |
CL101610019 | 0 | 250.643137254902 | 0.224397707218 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101040002 | 0 | 50.8196078431372 | 0.0476141336392 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101040007 | 0 | 49.5803921568627 | 0.0443321397721 | 0.0000000 | 0.0000000 | 2018-09-01 / 2018-12-01 |
CL101040001 | 0.819607843137255 | 49.4745098039216 | 0.0490302735314 | 1.6296296 | 0.0007990 | 2018-09-01 / 2018-12-01 |
CL101040009 | 1.63529411764706 | 101.011764705882 | 0.0920502698629 | 1.5931232 | 0.0014665 | 2018-09-01 / 2018-12-01 |
CL101044024 | 0 | 0 | 0.343230877798 | NA | NA | 2018-09-01 / 2018-12-01 |
CL101070001 | 0 | 0 | 0.0303463589963 | NA | NA | 2018-09-01 / 2018-12-01 |
CL101044020 | 0 | 0 | 0.0304940656141 | NA | NA | 2018-09-01 / 2018-12-01 |
CL101044022 | 0 | 0 | 0.0301132769341 | NA | NA | 2018-09-01 / 2018-12-01 |
CL101044021 | 0 | 0 | 0.0145008622673 | NA | NA | 2018-09-01 / 2018-12-01 |
CL101044023 | 0 | 0 | 0.0173113872952 | NA | NA | 2018-09-01 / 2018-12-01 |
# tercer_cuatri_18 <- fn_cart(18,3)
#
# union <- rbind(segundo_cuatri_18,tercer_cuatri_18)
#
# kbl(union) %>%
# kable_styling(bootstrap_options = c("striped", "hover")) %>%
# kable_paper() %>%
# scroll_box(width = "100%", height = "300px")
#
# write_xlsx(union,"union.xlsx")