options(scipen = 999999)
library(wooldridge)
data(hprice1)
head(force(hprice1), n=5) #mostrar las primeras 5 observaciones
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
library(stargazer)
modelo_price<-lm(formula = price~lotsize+sqrft, data = hprice1)
stargazer(modelo_price, title="Estimación Modelo Price", type = "text")
##
## Estimación Modelo Price
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## lotsize 0.002***
## (0.001)
##
## sqrft 0.133***
## (0.011)
##
## Constant 5.932
## (23.512)
##
## -----------------------------------------------
## Observations 88
## R2 0.663
## Adjusted R2 0.655
## Residual Std. Error 60.312 (df = 85)
## F Statistic 83.666*** (df = 2; 85)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
Presente unas pequeñas instrucciones para graficar un valor crítico y un “p-value” para las distribuciones Z,T, F, chi^2 y algunos ejemplos gráficos. ## Distribucion Z
library(fastGraph)
## Warning: package 'fastGraph' was built under R version 4.0.5
shadeDist(c(0.98),"dnorm" , 0, 1, lower.tail = TRUE )
library(fastGraph)
Coeficientes<-summary(modelo_price)$coefficients
T_values<-Coeficientes[,"t value"]
Etiquetas<-names(T_values)
#Gráficas Prueba T
for(k in 2:3){
tc<-T_values[k]
Valores_Criticos_T<-
shadeDist( c(-tc, tc ),
"dt", 13,
sub=paste("Par. Variable:",
Etiquetas[k]))
print(confint(modelo_price,parm = k,level = 0.98))
}
## 1 % 99 %
## lotsize 0.0005804874 0.003646502
## 1 % 99 %
## sqrft 0.1063397 0.1603843
F_Anova<-summary(modelo_price)$fstatistic[1]
GLibertad_N<-summary(modelo_price)$fstatistic[2]
GLibertad_D<-summary(modelo_price)$fstatistic[3]
Valores_Criticos_F<-qf(0.98,GLibertad_N,GLibertad_D,lower.tail = TRUE)
shadeDist(xshade = F_Anova,"df",GLibertad_N,GLibertad_D,lower.tail = FALSE,
sub=paste("VC:", Valores_Criticos_F," ","Fc:",F_Anova))
#Chi-Cuadada
library(fastGraph)
shadeDist(qchisq(0.02,88,lower.tail = FALSE),ddist = 'dchisq',parm1 = 88,lower.tail = FALSE)