library(wooldridge)
## Warning: package 'wooldridge' was built under R version 4.0.5
data(hprice1)
head(force(hprice1),n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
options(scipen = 999999)
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
library(readr)
## Warning: package 'readr' was built under R version 4.0.5
modelo_precios<-lm(formula = price ~ lotsize + sqrft + bdrms, data = hprice1)
stargazer(modelo_precios, title = "modelo precios", type = "text")
##
## modelo precios
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## lotsize 0.002***
## (0.001)
##
## sqrft 0.123***
## (0.013)
##
## bdrms 13.853
## (9.010)
##
## Constant -21.770
## (29.475)
##
## -----------------------------------------------
## Observations 88
## R2 0.672
## Adjusted R2 0.661
## Residual Std. Error 59.833 (df = 84)
## F Statistic 57.460*** (df = 3; 84)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
library(lmtest)
## Warning: package 'lmtest' was built under R version 4.0.5
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.0.5
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
dwtest(modelo_precios, alternative = "two.side", iterations = 1000)
##
## Durbin-Watson test
##
## data: modelo_precios
## DW = 2.1098, p-value = 0.6218
## alternative hypothesis: true autocorrelation is not 0
Se puede rechazar la presencia de autocorrelación (No se rechaza la H0), ya que el pvalue>0.05
bgtest(modelo_precios, order = 2)
##
## Breusch-Godfrey test for serial correlation of order up to 2
##
## data: modelo_precios
## LM test = 3.0334, df = 2, p-value = 0.2194
bgtest(modelo_precios, order = 1)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: modelo_precios
## LM test = 0.39362, df = 1, p-value = 0.5304
pvalue>0.05 No se rechaza la Ho, por lo tanto puede concluirse que los residuos del modelo, no siguen autocorrelación de 1° orden