library(wooldridge)
data(hprice1)
head(force(hprice1), n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
modelo_estimado_autocorrelacion<-lm(formula = price~lotsize+sqrft+bdrms, data = hprice1)
library(stargazer)
stargazer(modelo_estimado_autocorrelacion, title = "Modelo Estimado Regresion Lineal",type="html", digits=5)
| Dependent variable: | |
| price | |
| lotsize | 0.00207*** |
| (0.00064) | |
| sqrft | 0.12278*** |
| (0.01324) | |
| bdrms | 13.85252 |
| (9.01015) | |
| Constant | -21.77031 |
| (29.47504) | |
| Observations | 88 |
| R2 | 0.67236 |
| Adjusted R2 | 0.66066 |
| Residual Std. Error | 59.83348 (df = 84) |
| F Statistic | 57.46023*** (df = 3; 84) |
| Note: | p<0.1; p<0.05; p<0.01 |
library(lmtest)
dwtest(modelo_estimado_autocorrelacion, alternative = "two.sided",iterations = 1000)
##
## Durbin-Watson test
##
## data: modelo_estimado_autocorrelacion
## DW = 2.1098, p-value = 0.6218
## alternative hypothesis: true autocorrelation is not 0
Se rechaza la presencia de autocorrelacion, ya que el pvalue es p_value>0.05
library(lmtest)
bgtest(modelo_estimado_autocorrelacion,order = 1)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: modelo_estimado_autocorrelacion
## LM test = 0.39362, df = 1, p-value = 0.5304
library(lmtest)
bgtest(modelo_estimado_autocorrelacion,order = 2)
##
## Breusch-Godfrey test for serial correlation of order up to 2
##
## data: modelo_estimado_autocorrelacion
## LM test = 3.0334, df = 2, p-value = 0.2194
En ambos casos de comprobacion de primer y segundo orden para los residuos del modelo el pvalue es p_value>0.05, quiere decir que se rechaza la presencia de autocorrelacion