Carga de Datos
library(wooldridge)
data(hprice1)
head(force(hprice1),n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
1. Estimar el siguiente modelo: price = ˆα + ˆα1(lotsize) + ˆα2(sqrft) + ˆα3(bdrms) + E
options(scipen = 9999)
library(stargazer)
modelo.price <- lm(formula = price~lotsize+sqrft+bdrms,data = hprice1)
stargazer(modelo.price,title = "Modelo Price", type = "html")
Modelo Price
|
|
|
|
Dependent variable:
|
|
|
|
|
|
price
|
|
|
|
lotsize
|
0.002***
|
|
|
(0.001)
|
|
|
|
|
sqrft
|
0.123***
|
|
|
(0.013)
|
|
|
|
|
bdrms
|
13.853
|
|
|
(9.010)
|
|
|
|
|
Constant
|
-21.770
|
|
|
(29.475)
|
|
|
|
|
|
|
Observations
|
88
|
|
R2
|
0.672
|
|
Adjusted R2
|
0.661
|
|
Residual Std. Error
|
59.833 (df = 84)
|
|
F Statistic
|
57.460*** (df = 3; 84)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
a) Use la libreria lmtest para verificar si su varianza residual es homocedástica a través de la prueba de White (incluya los términos cruzados).
library(stargazer)
residuos<-modelo.price$residuals
data_auxiliar<-as.data.frame(cbind(residuos,hprice1))
regresion_auxiliar<-lm(I(residuos^2)~lotsize+sqrft+bdrms+I(lotsize^2)+I(sqrft^2)+I(bdrms^2)+lotsize*sqrft+lotsize*bdrms+sqrft*bdrms,data = data_auxiliar)
resumen<-summary(regresion_auxiliar)
R_2<-resumen$r.squared
n<-nrow(data_auxiliar)
LM_W<-n*R_2
gl<-3+3+3
vc<-qchisq(p=0.95,df=gl)
pvalue<-1-pchisq(q=LM_W,df=gl)
salida_white<-c(LM_W,vc,pvalue)
names(salida_white)<-c("LMW","Valor Critico","P value")
stargazer(salida_white,title = "Prueba de White",type = "html",digits = 6)
Prueba de White
|
|
|
LMW
|
Valor Critico
|
P value
|
|
|
|
33.731660
|
16.918980
|
0.000100
|
|
|