library(wooldridge)
data(hprice1)
head(force(hprice1),n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
options(scipen = 9999)
library(stargazer)
modelo.price <- lm(formula = price~lotsize+sqrft+bdrms,data = hprice1)
stargazer(modelo.price,title = "Modelo Price", type = "html")
| Dependent variable: | |
| price | |
| lotsize | 0.002*** |
| (0.001) | |
| sqrft | 0.123*** |
| (0.013) | |
| bdrms | 13.853 |
| (9.010) | |
| Constant | -21.770 |
| (29.475) | |
| Observations | 88 |
| R2 | 0.672 |
| Adjusted R2 | 0.661 |
| Residual Std. Error | 59.833 (df = 84) |
| F Statistic | 57.460*** (df = 3; 84) |
| Note: | p<0.1; p<0.05; p<0.01 |
#Forma Tabular
library(fastGraph)
library(normtest)
JB<- jb.norm.test(modelo.price$residuals)
print(JB)
Jarque-Bera test for normality
data: modelo.price$residuals JB = 32.278, p-value = 0.001
#Forma Gráfica
vc<-5.9915
shadeDist(xshade = JB$statistic, ddist = 'dchisq',parm1 = JB$statistic,lower.tail = FALSE, sub=paste("VC",vc,"JB",JB$statistic))
Se rechaza la Ho: Los residuos del modelo no siguen una distribución normal, el p_value 0.0015 < α 0.05
library(nortest)
lillie.test(modelo.price$residuals)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: modelo.price$residuals
## D = 0.075439, p-value = 0.2496
No se rechaza Ho: Los residuos del modelo siguen una distribución normal, el p_value 0.2496 > α 0.05
#Forma Tabular
library(fastGraph)
SW<-shapiro.test(modelo.price$residuals)
print(SW)
##
## Shapiro-Wilk normality test
##
## data: modelo.price$residuals
## W = 0.94132, p-value = 0.0005937
#Forma Gráfica
vc<-1.644854
shadeDist(xshade = SW$statistic, ddist = 'dchisq',parm1 = SW$statistic,lower.tail = FALSE, sub=paste("VC",vc,"SW",SW$statistic))
Los residuos del modelo no pueden ser estudiados correctamente, pues esta prueba es funcional con muestras pequeñas y la muestra de este modelo es de 88