library(wooldridge)
## Warning: package 'wooldridge' was built under R version 4.0.5
data(hprice1)
head(force(hprice1),n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
options(scipen = 999999)
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
modelo_precios<-lm(formula = price ~ lotsize + sqrft + bdrms, data = hprice1)
summary(modelo_precios)
##
## Call:
## lm(formula = price ~ lotsize + sqrft + bdrms, data = hprice1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -120.026 -38.530 -6.555 32.323 209.376
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -21.7703081 29.4750419 -0.739 0.46221
## lotsize 0.0020677 0.0006421 3.220 0.00182 **
## sqrft 0.1227782 0.0132374 9.275 0.0000000000000166 ***
## bdrms 13.8525217 9.0101454 1.537 0.12795
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 59.83 on 84 degrees of freedom
## Multiple R-squared: 0.6724, Adjusted R-squared: 0.6607
## F-statistic: 57.46 on 3 and 84 DF, p-value: < 0.00000000000000022
library(normtest)
jb.norm.test(modelo_precios$residuals)
##
## Jarque-Bera test for normality
##
## data: modelo_precios$residuals
## JB = 32.278, p-value = 0.0005
Residuos siguen una distribucion normal.
qqnorm(modelo_precios$residuals)
qqline(modelo_precios$residuals)
Cuartiles sobre la linea, es un ajuste bastante bueno.
No se rechaza la hipotesis nula, ya que los residuos muestran un comportamiento normal
library(nortest)
lillie.test(modelo_precios$residuals)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: modelo_precios$residuals
## D = 0.075439, p-value = 0.2496
qqnorm(modelo_precios$residuals)
qqline(modelo_precios$residuals)
No se rechaza la Hipotesis nula, ya que los residuos muestran un comportamiento normal
shapiro.test(modelo_precios$residuals)
##
## Shapiro-Wilk normality test
##
## data: modelo_precios$residuals
## W = 0.94132, p-value = 0.0005937
Conclusion: No se debe rechazar la Hipotesis nula, ya que los residuos muestran un comportamiento normal