Factorial design 2k

Question 1

An engineer is interested in the effects of cutting speed A, tool geometry B, and cutting angle C on the life (in hours) of a machine tool. Two levels of each factor are chosen, and three replicates of a 23 factorial design are run.

Data

knitr::opts_chunk$set(echo = TRUE)

A<-rep(c(-1,1,-1,1,-1,1,-1,1),3)
B<-rep(c(-1,-1,1,1,-1,-1,1,1),3)
C<-rep(c(-1,-1,-1,-1,1,1,1,1),3)

rep1<-c(22,32,35,55,44,40,60,39)
rep2<-c(31,43,34,47,45,37,50,41)
rep3<-c(25,29,50,46,38,36,54,47)
rep<-c(rep1, rep2, rep3)

A<-as.fixed(A)
B<-as.fixed(B)
C<-as.fixed(C)

dat<-data.frame(A,B,C,rep)
dat
##     A  B  C rep
## 1  -1 -1 -1  22
## 2   1 -1 -1  32
## 3  -1  1 -1  35
## 4   1  1 -1  55
## 5  -1 -1  1  44
## 6   1 -1  1  40
## 7  -1  1  1  60
## 8   1  1  1  39
## 9  -1 -1 -1  31
## 10  1 -1 -1  43
## 11 -1  1 -1  34
## 12  1  1 -1  47
## 13 -1 -1  1  45
## 14  1 -1  1  37
## 15 -1  1  1  50
## 16  1  1  1  41
## 17 -1 -1 -1  25
## 18  1 -1 -1  29
## 19 -1  1 -1  50
## 20  1  1 -1  46
## 21 -1 -1  1  38
## 22  1 -1  1  36
## 23 -1  1  1  54
## 24  1  1  1  47

Model analysis

mod<-lm(rep~A+B+C+A*B+B*C+A*C+A*B*C, data=dat)
gad(mod)
## Analysis of Variance Table
## 
## Response: rep
##          Df Sum Sq Mean Sq F value    Pr(>F)    
## A         1   0.67    0.67  0.0221 0.8836803    
## B         1 770.67  770.67 25.5470 0.0001173 ***
## C         1 280.17  280.17  9.2873 0.0076787 ** 
## A:B       1  16.67   16.67  0.5525 0.4680784    
## B:C       1  48.17   48.17  1.5967 0.2244753    
## A:C       1 468.17  468.17 15.5193 0.0011722 ** 
## A:B:C     1  28.17   28.17  0.9337 0.3482825    
## Residual 16 482.67   30.17                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coef(mod)
## (Intercept)          A1          B1          C1       A1:B1       B1:C1 
##   26.000000    8.666667   13.666667   16.333333    1.000000   -1.333333 
##       A1:C1    A1:B1:C1 
##  -13.333333   -8.666667

ABC interaction was removed since it is not significant.

mod<-lm(rep~A+B+C+A*B+B*C+A*C, data=dat)
gad(mod)
## Analysis of Variance Table
## 
## Response: rep
##          Df Sum Sq Mean Sq F value    Pr(>F)    
## A         1   0.67    0.67  0.0222  0.883346    
## B         1 770.67  770.67 25.6470 9.581e-05 ***
## C         1 280.17  280.17  9.3237  0.007186 ** 
## A:B       1  16.67   16.67  0.5546  0.466596    
## B:C       1  48.17   48.17  1.6029  0.222563    
## A:C       1 468.17  468.17 15.5801  0.001040 ** 
## Residual 17 510.83   30.05                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coef(mod)
## (Intercept)          A1          B1          C1       A1:B1       B1:C1 
##   24.916667   10.833333   15.833333   18.500000   -3.333333   -5.666667 
##       A1:C1 
##  -17.666667

BC interaction was removed since it is not significant.

mod<-lm(rep~A+B+C+A*B+A*C, data=dat)
gad(mod)
## Analysis of Variance Table
## 
## Response: rep
##          Df Sum Sq Mean Sq F value    Pr(>F)    
## A         1   0.67    0.67  0.0215  0.885143    
## B         1 770.67  770.67 24.8157 9.663e-05 ***
## C         1 280.17  280.17  9.0215  0.007626 ** 
## A:B       1  16.67   16.67  0.5367  0.473247    
## A:C       1 468.17  468.17 15.0751  0.001091 ** 
## Residual 18 559.00   31.06                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coef(mod)
## (Intercept)          A1          B1          C1       A1:B1       A1:C1 
##   26.333333   10.833333   13.000000   15.666667   -3.333333  -17.666667

AB interaction was removed since it is not significant.

mod<-lm(rep~A+B+C+A*C, data=dat)
gad(mod)
## Analysis of Variance Table
## 
## Response: rep
##          Df Sum Sq Mean Sq F value    Pr(>F)    
## A         1   0.67    0.67   0.022 0.8836408    
## B         1 770.67  770.67  25.436 7.216e-05 ***
## C         1 280.17  280.17   9.247 0.0067238 ** 
## A:C       1 468.17  468.17  15.452 0.0008972 ***
## Residual 19 575.67   30.30                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coef(mod)
## (Intercept)          A1          B1          C1       A1:C1 
##   27.166667    9.166667   11.333333   15.666667  -17.666667

Conclusion

Significant factors: B & C and the AC interaction where A: Cutting speed, B: Tool geometry, AC: Cutting speed and Cutting angle

Question 2

In a process development study on yield, four factors were studied, each at two levels: time (A), concentration (B), pressure (C), and temperature (D). Due to constraints on sampling, only a single replicate of the design may be run. What factors appear to be significant in determining the mean yield?

Data

A1<-rep(c(-1,1), 8)
B1<-rep(c(-1,-1,1,1), 4)
C1<-rep(c(-1,-1,-1,-1,1,1,1,1),2)
D1<-c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)

rep4<-c(12,18,13,16,17,15,20,15,10,25,13,24,19,21,17,23)

Model analysis

mod<-lm(rep4~A1+B1+C1+D1+
          A1*B1+B1*C1+
          A1*C1+A1*D1+B1*D1+C1*D1+A1*B1*C1+
          A1*B1*D1+A1*C1*D1+B1*C1*D1+
          A1*B1*C1*D1, data=dat)

coef(mod)
##   (Intercept)            A1            B1            C1            D1 
##  1.737500e+01  2.250000e+00  2.500000e-01  1.000000e+00  1.625000e+00 
##         A1:B1         B1:C1         A1:C1         A1:D1         B1:D1 
## -3.750000e-01  1.250000e-01 -2.125000e+00  2.000000e+00 -2.393918e-16 
##         C1:D1      A1:B1:C1      A1:B1:D1      A1:C1:D1      B1:C1:D1 
## -2.012279e-16  5.000000e-01  3.750000e-01 -1.250000e-01 -3.750000e-01 
##   A1:B1:C1:D1 
##  5.000000e-01
halfnormal(mod, main="Half normal plot for yield study")
## 
## Significant effects (alpha=0.05, Lenth method):
## [1] A1    A1:C1 A1:D1 D1

Conclusion

Significant effects A1: time, D1: temperature, and interactions A1:C1::time:pressure, A1:D1::time:temperature

R source code

#Flipped Assignment 9 
#Group 5

#Question 1
install.packages("GAD")
library(DoE.base)
library(GAD)

A<-rep(c(-1,1,-1,1,-1,1,-1,1),3)
B<-rep(c(-1,-1,1,1,-1,-1,1,1),3)
C<-rep(c(-1,-1,-1,-1,1,1,1,1),3)

rep1<-c(22,32,35,55,44,40,60,39)
rep2<-c(31,43,34,47,45,37,50,41)
rep3<-c(25,29,50,46,38,36,54,47)
rep<-c(rep1, rep2, rep3)

A<-as.fixed(A)
B<-as.fixed(B)
C<-as.fixed(C)

dat<-data.frame(A,B,C,rep)
dat

mod<-lm(rep~A+B+C+A*B+B*C+A*C+A*B*C, data=dat)
gad(mod)
coef(mod)

mod<-lm(rep~A+B+C+A*B+B*C+A*C, data=dat)
gad(mod)
coef(mod)

mod<-lm(rep~A+B+C+A*B+A*C, data=dat)
gad(mod)
coef(mod)

mod<-lm(rep~A+B+C+A*C, data=dat)
gad(mod)
coef(mod)

#Significant factors: B y C and the AC interaction where A: Cutting speed, 
#B: Tool geometry, C: Cutting speed and Cutting angle 

#Question 2

A1<-rep(c(-1,1), 8)
B1<-rep(c(-1,-1,1,1), 4)
C1<-rep(c(-1,-1,-1,-1,1,1,1,1),2)
D1<-c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)

rep4<-c(12,18,13,16,17,15,20,15,10,25,13,24,19,21,17,23)

dat1<-data.frame(A1,B1,C1,D1,rep4)
dat1

mod<-lm(rep4~A1+B1+C1+D1+
          A1*B1+B1*C1+
          A1*C1+A1*D1+B1*D1+C1*D1+A1*B1*C1+
          A1*B1*D1+A1*C1*D1+B1*C1*D1+
          A1*B1*C1*D1, data=dat)

coef(mod)
halfnormal(mod, main="Half normal plot for yield study")
?halfnormal #Single replicate

#Significant effects A1: time, D1: temperature, and interactions A1:C1::time:pressure, A1:D1::time:temperature