library(rgee)
ee_Initialize("tarredwall@gmail.com", drive = TRUE)
## -- rgee 1.0.9 --------------------------------------- earthengine-api 0.1.259 -- 
##  v email: tarredwall@gmail.com 
##  v Google Drive credentials:
 v Google Drive credentials:  FOUND
##  v Initializing Google Earth Engine:
 v Initializing Google Earth Engine:  DONE!
## 
 v Earth Engine user: users/tarredwall 
## --------------------------------------------------------------------------------

Drag Racing

Drag Racing

R

A partir del 15 de febrero de 2018, se debe utilizar la siguiente denominación:

Yo

I Región de Arica y Parinacota. Lunes 24 II Región de Tarapacá. Martes 25 III Región de Antofagasta. Miercoles 26 IV Región de Atacama. Jueves 27 V Región de Coquimbo. Viernes 28 VI Región de Valparaíso. Lunes 31

Victor

VII Región Metropolitana de Santiago. Lunes 24 VIII Región del Libertador General Bernardo O’Higgins. Martes 25 IX Región del Maule. Miercoles 26 X Región del Ñuble. Jueves 27 XI Región del Biobío. Viernes 28 XII Región de La Araucanía. Lunes 31

Abner

XIII Región de Los Ríos. Miercoles 26 XIV Región de Los Lagos. Jueves 27 XV Región de Aysén del General Carlos Ibáñez del Campo. Viernes 28 XVI Región de Magallanes y la Antártica Chilena. Lunes 31

1. Cargamos el shp de la primera region y lo filterboundiamos con la imagen satelital sentinel. Cargamos el shp de glaciares, y obtenemos las muestras interiores de los limites administrativos de color rojo que significaran glaciares que tendren numero 0. Obtenemos muestras para los colores verdes fuera de los limites administrativos. Unimos ambas muestras y categorizamos nuevamente la imagen satelital sentinel.

I Región de Arica y Parinacota.

1 Lo primero es dibujar el shp de la Región de Arica y parinacota

region_arica <- st_read("Regiones_separadas/Region_15.shp", 
        quiet = TRUE) %>% 
        sf_as_ee()
## Registered S3 method overwritten by 'geojsonsf':
##   method        from   
##   print.geojson geojson
arica <- region_arica$geometry()
Map$setCenter(lon = -69.7522, lat = -18.65665, zoom = 7)
Map$addLayer(arica)

2 lo segundo es asociar una imagen satelital Sentinel filtrafda por fecha, nubosidad y vinculada a la region de estudio. Y establecemos que el parametro sea la media.

start <- ee$Date("2019-01-01")
finish <- ee$Date("2019-04-01")
cc <- 20

sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(arica)$
  filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))

first <- sentinel1$median()

vizParams <- list(
  bands = c("B8","B5" , "B3"),
  #  bands = c("B2", "B3"),
  min = 100,
  max = 1000,
  gamma = 2
)
Map$setCenter(lon = -69.7522, lat = -18.65665, zoom = 7)
Map$addLayer(first, vizParams, "Landsat 8 image")

3 Lo tercero es construir un raster con NDGI mayor a 0 siempre vinculada a la primera imagen satelital que hemos extraído.

Construimos una imagen raster con una columna llamada nd con dos categorías para cada pixel: 0 si es rojo, 1 si es verde

getNDGI <- function(image) 
{
     image$normalizedDifference(c("B4", "B3")) > 0
}

ndgi <- getNDGI(first)
## Warning: Ops.ee.image.Image will be deprecated in rgee v.1.1.0. Please install
## rgeeExtra (https://github.com/r-earthengine/rgeeExtra). Deeply sorry for the
## inconveniences.
ndgiParams <- list(palette = c(
  "#d73027", "#f46d43", "#fdae61",
  "#fee08b", "#d9ef8b", "#a6d96a",
  "#66bd63", "#1a9850"
))

Map$setCenter(lon = -69.7522, lat = -18.65665, zoom = 7)
Map$addLayer(ndgi, ndgiParams, "NDGI")

4 obtenemos los shp que nos indican la presencia de glaciares en la Region de Arica y Parinacota.

glaciar_arica <- st_read("GlaciaresxRegion/Simple_ARICA_Y_PARINACOTA.shp",
        quiet = TRUE) %>%
        sf_as_ee()
glaciar_arica <- glaciar_arica$geometry()
Map$setCenter(lon = -69.7522, lat = -18.65665, zoom = 7)
Map$addLayer(glaciar_arica, ndgiParams, "NDGI")

5 Intersectamos las regiones glaciares de la region de Arica con nuestro ndvi, y de esta forma obtenemos un universo muestral al cual poder extraer nuestro primer set de muestras (pixeles rojos interiores).

ESTA ES LA IMAGEN SOBRE LA QUE EXTRAEREMOS EL PRIMER SET DE MUESTRAS

glaciares_adm_con_ngvi <- ndgi$clip(glaciar_arica)
Map$setCenter(lon = -69.80584, lat = -17.67837, zoom = 15)
Map$addLayer(glaciares_adm_con_ngvi, ndgiParams, "NDGI")

digresion

digresion

6 Hay que hacer una diferencia (se le resta al shp de la región de Arica los shps de los glaciares) para intersectarla con nuestra imagen ngdi y obtener el segundo universo muestral.

6.1 Primero obtenemos nuestros shapes sin zonas administrativas glaciares:

# region_arica <- st_read("Regiones_separadas/Region_15.shp", 
#         quiet = TRUE) %>% 
#         sf_as_ee()
# arica <- region_arica$geometry()
# glaciar_arica <- st_read("GlaciaresxRegion/Simple_ARICA_Y_PARINACOTA.shp",
#         quiet = TRUE) %>%
#         sf_as_ee()
# glaciar_arica <- glaciar_arica$geometry()
arica_sin_glacia <- arica$difference(glaciar_arica, ee$ErrorMargin(1))
Map$setCenter(lon = -69.80584, lat = -17.67837, zoom = 7)
Map$addLayer(arica_sin_glacia, ndgiParams, "NDGI")

6.2 Necesitamos intersectar nuestro ndvi con la zona de Arica y Parinacota que excluye los glaciares.

ndvi_arica_sin_glaciares <- ndgi$clip(arica_sin_glacia)
Map$setCenter(lon = -69.80584, lat = -17.67837, zoom = 7)
Map$addLayer(ndvi_arica_sin_glaciares, ndgiParams, "NDGI")

7 Ahora tenemos dos regiones preparadas sobre las cuales podemos extraer nuestras muestras. A efectos de orden nombrémoslas:

7.1. pixeles rojos interiores

7.2. pixeles verdes exteriores

7.1. pixeles rojos interiores

Necesitamos intersectar las regiones administrativas glaciares con nuestro raster ndvi y de ahi extraer las muestras de color rojo que simbolizaran los glaciares.

limites_glaciares_con_rasters <- ndgi$clip(glaciar_arica)
Map$setCenter(lon = -69.80584, lat = -17.67837, zoom = 15)
Map$addLayer(limites_glaciares_con_rasters , ndgiParams, "NDGI")

1 Muestreo

# region_arica <- st_read("Regiones_separadas/Region_15.shp", quiet = TRUE)
# region_arica

Los rojos interiores son glaciares, 0 = rojo y son llamados muestras_in_gee_rojas.

muestras_in <- ndgi$sampleRegions(
    collection = ee$Feature(glaciar_arica),
    scale = 100,
    tileScale = 16,
    geometries = TRUE
  )

muestras_in_gee_rojas = muestras_in$filter(ee$Filter$eq('nd', 0))

Map$setCenter(lon = -69.80584, lat = -17.67837, zoom = 7)
Map$addLayer(
  eeObject =  muestras_in_gee_rojas,
  visParams = {},
  name = "puntos glaciares"
)

7.2. Pixeles verdes exteriores

ndvi_arica_sin_glaciares <- ndgi$clip(arica_sin_glacia)
Map$setCenter(lon = -69.80584, lat = -17.67837, zoom = 7)
Map$addLayer(ndvi_arica_sin_glaciares, ndgiParams, "NDGI")

Los verdes exteriores no son glaciares 1 = verde

muestras_in <- ndgi$sampleRegions(
    collection = ee$Feature(ndvi_arica_sin_glaciares),
    scale = 1000,
    tileScale = 16,
    geometries = TRUE
  )

muestras_out_gee_verdes = muestras_in$filter(ee$Filter$eq('nd', 1))

Map$setCenter(lon = -69.80584, lat = -17.67837, zoom = 7)
Map$addLayer(
  eeObject =  muestras_out_gee_verdes,
  visParams = {},
  name = "puntos no glaciares"
)

III debemos unir muestras y generar el random forest

union_total <- muestras_out_gee_verdes$merge(muestras_in_gee_rojas)

3 Aplicamos Random Forest

(volver al índice)

region_arica <- st_read("Regiones_separadas/Region_15.shp", 
        quiet = TRUE) %>% 
        sf_as_ee()
arica <- region_arica$geometry()

start <- ee$Date("2019-01-01")
finish <- ee$Date("2019-04-01")
cc <- 20

sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(arica)$
  filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))

first <- sentinel1$median()

# Use these bands for prediction.
bands <- c("B2", "B3", "B4", "B8")

# This property of the table stores the land cover labels.
label <- "nd"

# Overlay the points on the imagery to get training.
training <- first$select(bands)$sampleRegions(
  collection = union_total,
  properties = list(label),
  scale = 10
)

# Train a CART classifier with default parameters.
trained <- ee$Classifier$smileRandomForest(10)$train(training, label, bands)

# Classify the image with the same bands used for training.
classified1 <- first$select(bands)$classify(trained)

# Viz parameters.
# viz_img <- list(bands = c("B4", "B3", "B2"), max = 0.4)
vizParams <- list(
  bands = c("B8","B5" , "B3"),
  #  bands = c("B2", "B3"),
  min = 100,
  max = 1000,
  gamma = 2
)

viz_class <- list(palette = c("red", "green", "blue"), min = 0, max = 2)

Map$addLayer(first, vizParams, name = "image") +
Map$addLayer(classified1, viz_class, name = "classification")

18:29 18:30

Le aplicamos la matriz de confusion:

trainAccuracy = trained$confusionMatrix()
trainAccuracy$getInfo()
## [[1]]
## [1] 22  3
## 
## [[2]]
## [1]     1 17754

18:40 18:43

4 Aplicamos CART

(volver al índice)

region_arica <- st_read("Regiones_separadas/Region_15.shp", 
        quiet = TRUE) %>% 
        sf_as_ee()
arica <- region_arica$geometry()

start <- ee$Date("2019-01-01")
finish <- ee$Date("2019-04-01")
cc <- 20

sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(arica)$
  filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))

first <- sentinel1$median()

# Use these bands for prediction.
bands <- c("B2", "B3", "B4", "B8")

# This property of the table stores the land cover labels.
label <- "nd"

# Overlay the points on the imagery to get training.
training <- first$select(bands)$sampleRegions(
  collection = union_total,
  properties = list(label),
  scale = 10
)

# Train a CART classifier with default parameters.
trained <- ee$Classifier$smileCart(10)$train(training, label, bands)

# Classify the image with the same bands used for training.
classified <- first$select(bands)$classify(trained)

# Viz parameters.
# viz_img <- list(bands = c("B4", "B3", "B2"), max = 0.4)
vizParams <- list(
  bands = c("B8","B5" , "B3"),
  #  bands = c("B2", "B3"),
  min = 100,
  max = 1000,
  gamma = 2
)

viz_class <- list(palette = c("red", "green", "blue"), min = 0, max = 2)

Map$addLayer(first, vizParams, name = "image") +
Map$addLayer(classified, viz_class, name = "classification")

18:47 18:50

trainAccuracy = trained$confusionMatrix()
trainAccuracy$getInfo()
## [[1]]
## [1] 16  9
## 
## [[2]]
## [1]     2 17753

18:51 18 53

4 Aplicamos SVM

(volver al índice)

region_arica <- st_read("Regiones_separadas/Region_15.shp", 
        quiet = TRUE) %>% 
        sf_as_ee()
arica <- region_arica$geometry()

start <- ee$Date("2019-01-01")
finish <- ee$Date("2019-04-01")
cc <- 20

sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(arica)$
  filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))

first <- sentinel1$median()

# Use these bands for prediction.
bands <- c("B2", "B3", "B4", "B8")

# This property of the table stores the land cover labels.
label <- "nd"

# Overlay the points on the imagery to get training.
training <- first$select(bands)$sampleRegions(
  collection = union_total,
  properties = list(label),
  scale = 10
)
classifier = ee$Classifier$libsvm(
  kernelType = "RBF",
  gamma = 0.5,
  cost = 10
)
# Train a CART classifier with default parameters.
trained = classifier$train(training, label, bands)

# Classify the image with the same bands used for training.
classified <- first$select(bands)$classify(trained)

# Viz parameters.
# viz_img <- list(bands = c("B4", "B3", "B2"), max = 0.4)
vizParams <- list(
  bands = c("B8","B5" , "B3"),
  #  bands = c("B2", "B3"),
  min = 100,
  max = 1000,
  gamma = 2
)

viz_class <- list(palette = c("red", "green", "blue"), min = 0, max = 2)

Map$addLayer(first, vizParams, name = "image") +
Map$addLayer(classified, viz_class, name = "classification")

No se puede obtener la matriz de confusion para libsvm pues excede limites de memoria

# trainAccuracy = trained$confusionMatrix()
# trainAccuracy$getInfo()

2. Una vez obtenido nuestro raster random forest interceptamos por limites glaciares, Y EN CADA UNO DE ELLOS determinamos la cantidad de pixeles rojos

mask_0 <- read_sf("GlaciaresxRegion/Simple_ARICA_Y_PARINACOTA.shp")
reg_15_2 <-  mask_0 %>% dplyr::select(COD_GLA)
varia <- reg_15_2 %>%
        sf_as_ee()

region_0 <- varia$geometry()
sale_4 <- classified1$clip(region_0)

puntos_r <- sale_4$select('classification')$eq(0)

areas_rojas = puntos_r$reduceRegions(
reducer= ee$Reducer$sum(),
collection= varia,
scale= 30
)

rojas <- areas_rojas$getInfo()

rojas1 <- as.data.frame(rojas)
puntos_v <- sale_4$select('classification')$eq(1)

areas_verdes = puntos_v$reduceRegions(
reducer= ee$Reducer$sum(),
collection= varia,
scale= 30
)

verdes <- areas_verdes$getInfo()

verdes1 <- as.data.frame(verdes)
rojas1$features.properties.COD_GLA.50
## [1] "CL101021034" "CL101021034"
rojas1$features.properties.sum.50
## [1] 0 0
r_v <- rbind(colnames(rojas1),rojas1,verdes1)
r_v <- r_v[1:4,]
r_v <- r_v[-3,]
r_v <- t(r_v)
r_v <- as.data.frame(r_v)
names(r_v)[1] <- "col1"
names(r_v)[2] <- "col2"
names(r_v)[3] <- "col3"
r_v$col4 <- r_v$col3
data1 <- filter(r_v, grepl("features.properties.COD_GLA",col1))
data1 <- as.data.frame(data1[,2])


data2 <- filter(r_v, grepl("features.properties.sum",col1))
data2 <- as.data.frame(data2[,c(2,3)])


data3 <- cbind(data1,data2)

kbl(data3) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
data1[, 2] col2 col3
features.properties.sum CL101001010 14.7098039215686 88.3176470588235
features.properties.sum.1 CL101010001 68.6235294117647 1146.45882352941
features.properties.sum.2 CL101010006 8.89803921568627 174.352941176471
features.properties.sum.3 CL101010009 4.64705882352941 213.039215686275
features.properties.sum.4 CL101010012 117.701960784314 162.419607843137
features.properties.sum.5 CL101010016 3.63137254901961 21.0156862745098
features.properties.sum.6 CL101010002 8.65098039215686 16.6823529411765
features.properties.sum.7 CL101001031 0.972549019607843 351.627450980392
features.properties.sum.8 CL101001030 2.77254901960784 201.36862745098
features.properties.sum.9 CL101001011 5.39607843137255 60.8
features.properties.sum.10 CL101020003 1 50.2078431372549
features.properties.sum.11 CL101001032 53.1450980392157 179.686274509804
features.properties.sum.12 CL101030019 8.02745098039216 118.164705882353
features.properties.sum.13 CL101010018 0.156862745098039 13.756862745098
features.properties.sum.14 CL101010017 14.7882352941176 105.01568627451
features.properties.sum.15 CL101010011 46.8862745098039 105.537254901961
features.properties.sum.16 CL101001029 21.5843137254902 90.4470588235294
features.properties.sum.17 CL101030020 0 16.6823529411765
features.properties.sum.18 CL101000019 0 47.5098039215686
features.properties.sum.19 CL101501019 0 8.86274509803921
features.properties.sum.20 CL101501018 0 13.8470588235294
features.properties.sum.21 CL101501017 0 406.901960784314
features.properties.sum.22 CL101501016 0 302.623529411765
features.properties.sum.23 CL101501014 0 121.58431372549
features.properties.sum.24 CL101501015 0 23.2039215686274
features.properties.sum.25 CL101501012 0 80.6274509803922
features.properties.sum.26 CL101501013 0 13.9058823529412
features.properties.sum.27 CL101501011 0 225.81568627451
features.properties.sum.28 CL101501010 0 24.1098039215686
features.properties.sum.29 CL101501009 0 300.964705882353
features.properties.sum.30 CL101501008 0 91.6941176470588
features.properties.sum.31 CL101501007 0 10.0588235294118
features.properties.sum.32 CL101501006 0 10.6392156862745
features.properties.sum.33 CL101501005 0 112.294117647059
features.properties.sum.34 CL101501004 0 262.254901960784
features.properties.sum.35 CL101501003 0 16.6078431372549
features.properties.sum.36 CL101501002 0 147.466666666667
features.properties.sum.37 CL101501001 0 505.835294117647
features.properties.sum.38 CL101500007 0 41.5607843137255
features.properties.sum.39 CL101500006 0 580.36862745098
features.properties.sum.40 CL101500005 0 138.066666666667
features.properties.sum.41 CL101500004 0 135.772549019608
features.properties.sum.42 CL101500003 0 30.5294117647059
features.properties.sum.43 CL101500002 0 22.9647058823529
features.properties.sum.44 CL101500001 0 24.2666666666667
features.properties.sum.45 CL101410005 0 47.2235294117647
features.properties.sum.46 CL101410004 0 23.7176470588235
features.properties.sum.47 CL101410003 0 77.7098039215687
features.properties.sum.48 CL101030026 0 167.282352941176
features.properties.sum.49 CL101021035 0 11.4117647058824
features.properties.sum.50 CL101021034 0 7.15686274509804
features.properties.sum.51 CL101021036 0 11.0078431372549
features.properties.sum.52 CL101410002 0 30.3254901960784
features.properties.sum.53 CL101410001 0 220.6
features.properties.sum.54 CL101300047 0 24.7529411764706
features.properties.sum.55 CL101300046 0 31.4352941176471
features.properties.sum.56 CL101300045 0 33.5843137254902
features.properties.sum.57 CL101300039 0 19.7960784313725
features.properties.sum.58 CL101300044 0 5.83529411764706
features.properties.sum.59 CL101300040 0 26.5372549019608
features.properties.sum.60 CL101300043 0 19.0274509803922
features.properties.sum.61 CL101300042 0 88.9647058823529
features.properties.sum.62 CL101300041 0 10.2745098039216
features.properties.sum.63 CL101300038 0 146.788235294118
features.properties.sum.64 CL101300037 0 12.6823529411765
features.properties.sum.65 CL101300036 0 153.941176470588
features.properties.sum.66 CL101300035 0 9.86274509803921
features.properties.sum.67 CL101300034 0 38.643137254902
features.properties.sum.68 CL101300032 0 35.6235294117647
features.properties.sum.69 CL101300031 0 5.71764705882353
features.properties.sum.70 CL101300030 0 26.043137254902
features.properties.sum.71 CL101300029 0 19.5529411764706
features.properties.sum.72 CL101300028 0 49.7411764705882
features.properties.sum.73 CL101300026 0 82.5137254901961
features.properties.sum.74 CL101300027 0 8.84705882352941
features.properties.sum.75 CL101300025 0 142.960784313726
features.properties.sum.76 CL101300024 0 80.6705882352941
features.properties.sum.77 CL101300023 0 77.5882352941176
features.properties.sum.78 CL101300022 0 26.3058823529412
features.properties.sum.79 CL101300021 0 178.309803921569
features.properties.sum.80 CL101300020 0 6.17647058823529
features.properties.sum.81 CL101300019 0 9.00392156862745
features.properties.sum.82 CL101300018 0 81.1647058823529
features.properties.sum.83 CL101300017 0 21.9686274509804
features.properties.sum.84 CL101300016 0 39.1333333333333
features.properties.sum.85 CL101300015 0 7.69803921568628
features.properties.sum.86 CL101020006 0 40.0313725490196
features.properties.sum.87 CL101020007 0 32.0549019607843
features.properties.sum.88 CL101300014 0 103.380392156863
features.properties.sum.89 CL101300013 0 182.917647058824
features.properties.sum.90 CL101300011 0 53.3686274509804
features.properties.sum.91 CL101300012 0 27.2392156862745
features.properties.sum.92 CL101300010 0 26.9098039215686
features.properties.sum.93 CL101300009 0 49.1882352941176
features.properties.sum.94 CL101300008 0 47.5764705882353
features.properties.sum.95 CL101300007 0 40.564705882353
features.properties.sum.96 CL101300006 0 11.6549019607843
features.properties.sum.97 CL101300005 0 36.1137254901961
features.properties.sum.98 CL101300004 0 15.4078431372549
features.properties.sum.99 CL101300003 0 39.9764705882353
features.properties.sum.100 CL101300002 0 6.03921568627451
features.properties.sum.101 CL101300001 0 41.2352941176471
features.properties.sum.102 CL101202037 0 16.7137254901961
features.properties.sum.103 CL101202007 0 96.4196078431372
features.properties.sum.104 CL101202016 0 78.721568627451
features.properties.sum.105 CL101202015 0 13.3803921568627
features.properties.sum.106 CL101202014 0 10.1058823529412
features.properties.sum.107 CL101201024 0 25.5960784313726
features.properties.sum.108 CL101202003 0 72.2117647058824
features.properties.sum.109 CL101202009 0 22.6745098039216
features.properties.sum.110 CL101202013 0 5.94117647058823
features.properties.sum.111 CL101202031 0.188235294117647 139.403921568627
features.properties.sum.112 CL101202030 0 14.2509803921569
features.properties.sum.113 CL101202034 0 119.58431372549
features.properties.sum.114 CL101202033 0 22.9882352941177
features.properties.sum.115 CL101202035 0 390.549019607843
features.properties.sum.116 CL101202036 0 101.462745098039
features.properties.sum.117 CL101020001 0 47.9960784313726
features.properties.sum.118 CL101020002 0 20.5921568627451
features.properties.sum.119 CL101001034 0 40.3137254901961
features.properties.sum.120 CL101001035 0 14.9647058823529
features.properties.sum.121 CL101202032 0 58.3098039215686
features.properties.sum.122 CL101201023 0 39.0509803921569
features.properties.sum.123 CL101202001 0 58.8509803921568
features.properties.sum.124 CL101202026 0 51.3843137254902
features.properties.sum.125 CL101202027 0 11.4156862745098
features.properties.sum.126 CL101202029 0 8.53333333333333
features.properties.sum.127 CL101202028 0 8.34509803921569
features.properties.sum.128 CL101202022 0 11.5803921568627
features.properties.sum.129 CL101200025 0 17.3098039215686
features.properties.sum.130 CL101200032 0 25.9960784313726
features.properties.sum.131 CL101200021 0 121.474509803922
features.properties.sum.132 CL101200017 0 31.6823529411765
features.properties.sum.133 CL101200012 0 25.9333333333333
features.properties.sum.134 CL101200015 0 104.909803921569
features.properties.sum.135 CL101200014 0 54.7803921568628
features.properties.sum.136 CL101200013 0 208.623529411765
features.properties.sum.137 CL101200008 0 16.1803921568627
features.properties.sum.138 CL101200007 0 117.780392156863
features.properties.sum.139 CL101200006 0 21.4117647058823
features.properties.sum.140 CL101200005 0 32.2039215686274
features.properties.sum.141 CL101200004 0 78.7490196078432
features.properties.sum.142 CL101201003 0 75.6666666666667
features.properties.sum.143 CL101201001 0 47.9960784313726
features.properties.sum.144 CL101201002 0 12.6980392156863
features.properties.sum.145 CL101200033 0 60.556862745098
features.properties.sum.146 CL101200034 0 72.8509803921569
features.properties.sum.147 CL101201011 0 38.4941176470588
features.properties.sum.148 CL101201009 0 77.4039215686274
features.properties.sum.149 CL101201012 0 110.317647058824
features.properties.sum.150 CL101000007 0 52.7803921568627
features.properties.sum.151 CL101000012 0 56.878431372549
features.properties.sum.152 CL101000008 0 6.55294117647059
features.properties.sum.153 CL101000003 0 49.2745098039215
features.properties.sum.154 CL101000004 0 15.4705882352941
features.properties.sum.155 CL101000005 0 6.65490196078431
features.properties.sum.156 CL101000002 0 36.3098039215686
features.properties.sum.157 CL101201016 0 34.4078431372549
features.properties.sum.158 CL101201015 0 25.6941176470588
features.properties.sum.159 CL101201018 0 57.443137254902
features.properties.sum.160 CL101201017 0 4.85490196078431
features.properties.sum.161 CL101201019 0 90.1333333333333
features.properties.sum.162 CL101201020 0 44.2588235294118
features.properties.sum.163 CL101201022 0 66.9764705882353
features.properties.sum.164 CL101201021 0 31.4705882352941
features.properties.sum.165 CL101201014 0 130.129411764706
features.properties.sum.166 CL101201013 0 316.247058823529
features.properties.sum.167 CL101000009 0 8.20392156862745
features.properties.sum.168 CL101000010 0 11.9803921568627
features.properties.sum.169 CL101000011 0 23.0627450980392
features.properties.sum.170 CL101000014 0 46.478431372549
features.properties.sum.171 CL101000013 0 38.9921568627451
features.properties.sum.172 CL101000015 0 28.6235294117647
features.properties.sum.173 CL101000020 0 747.180392156863
features.properties.sum.174 CL101000021 0 40.2627450980392
features.properties.sum.175 CL101000022 0 21.2
features.properties.sum.176 CL101201004 0 83.4823529411765
features.properties.sum.177 CL101201005 0.992156862745098 29.0352941176471
features.properties.sum.178 CL101000018 0 49.1803921568628
features.properties.sum.179 CL101201010 0 7.7921568627451
features.properties.sum.180 CL101000016 0 5.16470588235294
features.properties.sum.181 CL101000017 0 12.8509803921569
features.properties.sum.182 CL101200022 0 17.5647058823529
features.properties.sum.183 CL101200024 0 70.7764705882353
features.properties.sum.184 CL101200023 0 32.2392156862745
features.properties.sum.185 CL101200020 0 127.945098039216
features.properties.sum.186 CL101200016 0 73.0862745098039
features.properties.sum.187 CL101001005 0.72156862745098 47.2705882352941
features.properties.sum.188 CL101001003 0 128.670588235294
features.properties.sum.189 CL101001002 0 46.3294117647059
features.properties.sum.190 CL101001001 0 22.9882352941176
features.properties.sum.191 CL101001004 0 21.4705882352941
features.properties.sum.192 CL101001009 0 63.0901960784314
features.properties.sum.193 CL101001008 0 4.76078431372549
features.properties.sum.194 CL101001007 0 5.56862745098039
features.properties.sum.195 CL101001019 0 40.2
features.properties.sum.196 CL101001018 0 14.1647058823529
features.properties.sum.197 CL101001020 0 49.643137254902
features.properties.sum.198 CL101001022 0 42.9803921568628
features.properties.sum.199 CL101001021 0 129.254901960784
features.properties.sum.200 CL101010003 0 53.7529411764706
features.properties.sum.201 CL101010004 0 37.0627450980392
features.properties.sum.202 CL101010005 0 39.3921568627451
features.properties.sum.203 CL101010008 0 124.792156862745
features.properties.sum.204 CL101010015 0 169.090196078431
features.properties.sum.205 CL101010020 0 63.8235294117647
features.properties.sum.206 CL101010021 0 128.164705882353
features.properties.sum.207 CL101021013 0 265.352941176471
features.properties.sum.208 CL101021014 0 212.972549019608
features.properties.sum.209 CL101021011 0 145.439215686274
features.properties.sum.210 CL101021020 0 767.474509803922
features.properties.sum.211 CL101021012 0 36.0274509803922
features.properties.sum.212 CL101021005 0 96.9686274509804
features.properties.sum.213 CL101021021 0 169.454901960784
features.properties.sum.214 CL101021022 0 74.5607843137255
features.properties.sum.215 CL101021023 0 220.745098039216
features.properties.sum.216 CL101021024 0 16.3019607843137
features.properties.sum.217 CL101021025 0 11.8901960784314
features.properties.sum.218 CL101021026 0 11.5529411764706
features.properties.sum.219 CL101030012 0 98.6039215686274
features.properties.sum.220 CL101030014 0 109.333333333333
features.properties.sum.221 CL101030017 0 8.92549019607843
features.properties.sum.222 CL101021030 0 70.7843137254902
features.properties.sum.223 CL101021031 0 164.796078431373
features.properties.sum.224 CL101021033 0 10.9686274509804
features.properties.sum.225 CL101021032 0 310.21568627451
features.properties.sum.226 CL101030011 0 104.909803921569
features.properties.sum.227 CL101030009 0 135.6
features.properties.sum.228 CL101030010 0 484.788235294117
features.properties.sum.229 CL101030007 0 93.2392156862745
features.properties.sum.230 CL101030006 0 23.5411764705882
features.properties.sum.231 CL101030004 0 6.06666666666667
features.properties.sum.232 CL101030001 0 161.494117647059
features.properties.sum.233 CL101030002 0 184.992156862745
features.properties.sum.234 CL101030003 0 19.8980392156863
features.properties.sum.235 CL101021027 0 19.6196078431373
features.properties.sum.236 CL101030005 0 6.46666666666667
features.properties.sum.237 CL101030025 0 167.596078431373
features.properties.sum.238 CL101030024 0 27.8
features.properties.sum.239 CL101030023 0 24.0117647058824
features.properties.sum.240 CL101030022 0 57.3529411764706
features.properties.sum.241 CL101030021 0 39.2470588235294
features.properties.sum.242 CL101040010 0 5.65098039215686
features.properties.sum.243 CL101410006 0 7.51764705882353
features.properties.sum.244 CL101300033 0 18.2117647058823
features.properties.sum.245 CL101021019 0 460.937254901961
features.properties.sum.246 CL101001023 13.121568627451 630.4
features.properties.sum.247 CL101010007 18.1372549019608 140.662745098039
features.properties.sum.248 CL101010013 102.537254901961 557.658823529412
features.properties.sum.249 CL101010014 16.6705882352941 411.498039215686
features.properties.sum.250 CL101021010 9.16470588235294 89.8274509803921
features.properties.sum.251 CL101021004 26.0117647058824 716.745098039216
features.properties.sum.252 CL101010026 40.0039215686274 555.819607843138
features.properties.sum.253 CL101021007 8.75294117647059 551.666666666667
features.properties.sum.254 CL101010022 7.38823529411765 577.482352941177
features.properties.sum.255 CL101021008 3.10980392156863 342.776470588235
features.properties.sum.256 CL101010024 0 271.811764705882
features.properties.sum.257 CL101010025 0 259.737254901961
features.properties.sum.258 CL101030008 25.5294117647059 98.9686274509804
features.properties.sum.259 CL101021029 27.8235294117647 169.835294117647
features.properties.sum.260 CL101030013 6 85.7803921568628
features.properties.sum.261 CL101030016 0 9.71372549019608
features.properties.sum.262 CL101030018 0 17.721568627451
features.properties.sum.263 CL101030015 2.70588235294118 290.086274509804
features.properties.sum.264 CL101202018 0.00392156862745098 36.956862745098
features.properties.sum.265 CL101202002 0 43.4549019607843
features.properties.sum.266 CL101202025 0 31.3607843137255
features.properties.sum.267 CL101202006 7.47450980392157 35.8823529411765
features.properties.sum.268 CL101202010 150.070588235294 210.423529411765
features.properties.sum.269 CL101202017 5.33725490196078 45.8823529411765
features.properties.sum.270 CL101202021 0 30.6666666666667
features.properties.sum.271 CL101202023 0 15.7843137254902
features.properties.sum.272 CL101000001 0 26.9921568627451
features.properties.sum.273 CL101000006 49.4156862745098 141.356862745098
features.properties.sum.274 CL101200001 60.1333333333333 65.6980392156863
features.properties.sum.275 CL101021028 3.55686274509804 14.6039215686275
features.properties.sum.276 CL101021002 1.04313725490196 132.333333333333
features.properties.sum.277 CL101021017 2.01176470588235 83.5764705882353
features.properties.sum.278 CL101001025 3.7921568627451 233.278431372549
features.properties.sum.279 CL101001015 4.8156862745098 162.078431372549
features.properties.sum.280 CL101001016 0.333333333333333 86.4
features.properties.sum.281 CL101001013 1.07450980392157 17.4823529411765
features.properties.sum.282 CL101001012 9.05098039215686 85.9529411764706
features.properties.sum.283 CL101001014 7.94117647058823 134.713725490196
features.properties.sum.284 CL101001006 0 37.878431372549
features.properties.sum.285 CL101202011 0 13.7529411764706
features.properties.sum.286 CL101202008 1.18823529411765 21.1686274509804
features.properties.sum.287 CL101202020 1 21.2156862745098
features.properties.sum.288 CL101202024 0 33.6862745098039
features.properties.sum.289 CL101201006 37.843137254902 118.733333333333
features.properties.sum.290 CL101201007 40.6549019607843 62.8156862745098
features.properties.sum.291 CL101201008 15.1019607843137 72.2196078431372
features.properties.sum.292 CL101200003 4.22352941176471 16.6941176470588
features.properties.sum.293 CL101200002 34.9843137254902 52.8901960784314
features.properties.sum.294 CL101200018 7.08627450980392 109.541176470588
features.properties.sum.295 CL101200011 11.8588235294118 38.3921568627451
features.properties.sum.296 CL101200019 7.43529411764706 27.4509803921569
features.properties.sum.297 CL101200026 1.87450980392157 21.3176470588235
features.properties.sum.298 CL101200028 14.7450980392157 30.0941176470588
features.properties.sum.299 CL101200027 8.86666666666667 11.9921568627451
features.properties.sum.300 CL101200029 249.8 303.517647058824
features.properties.sum.301 CL101202005 7.6156862745098 38.4901960784314
features.properties.sum.302 CL101202019 0.0509803921568627 19.8901960784314
features.properties.sum.303 CL101021003 0 13.8039215686274
features.properties.sum.304 CL101021001 0 105.776470588235
features.properties.sum.305 CL101010023 0.309803921568627 89.7254901960784
features.properties.sum.306 CL101021015 4.15686274509804 150.352941176471
features.properties.sum.307 CL101010019 9.64313725490196 84.5568627450981
features.properties.sum.308 CL101021016 10.3411764705882 35.7529411764706
features.properties.sum.309 CL101001028 4.00392156862745 41.7098039215686
features.properties.sum.310 CL101001026 6.65098039215686 134.305882352941
features.properties.sum.311 CL101001027 6.48235294117647 68.1137254901961
features.properties.sum.312 CL101001024 0 55.6627450980392
features.properties.sum.313 CL101001033 65.3176470588235 188.521568627451
features.properties.sum.314 CL101020004 30.2549019607843 52.6745098039216
features.properties.sum.315 CL101020005 13.321568627451 50.156862745098
features.properties.sum.316 CL101021009 18.443137254902 138.247058823529
features.properties.sum.317 CL101021006 10.0509803921569 351.890196078431
features.properties.sum.318 CL101200031 8.85098039215686 57.9019607843137
features.properties.sum.319 CL101200030 12.1647058823529 409.529411764706
features.properties.sum.320 CL101200010 34.043137254902 53.0156862745098
features.properties.sum.321 CL101200009 36.5921568627451 203.905882352941
features.properties.sum.322 CL101202004 1.13725490196078 12.7450980392157
features.properties.sum.323 CL101202012 0.662745098039216 20.8470588235294
features.properties.sum.324 CL101001017 5.22745098039216 217.407843137255
features.properties.sum.325 CL101010010 19.2509803921569 174.894117647059
features.properties.sum.326 CL101021018 13.3019607843137 116.592156862745