Glaciares en Chile
Optimización del Cálculo de áreas.
Abstract
El primer tema que nos ha ocupado ha sido el establecer un cronograma que se entrega en las primeras lÃneas, se expone un ejemplo completo de cómo debe ser ejecutado el RF, el CART y las SVM adjuntando una matriz de confusión en cada una. LA SVM revienta la MdeC aunque las dos restantes tienen un nivel de precisión bárbaro.
Por otro lado, nos hemos encontrado con múltiples errores en las instalaciones de R, Rgee y Rstudio en diferentes computadores, siendo que en los propios han funcionado ok. Instalar aplicaciones complejas es delicado y se sospecha la corrupción de muchos elementos en las computadoras donde ni se instalan ni corren bien. Realizaremos el siguiente ejercicio: utilizaremos una de las computadoras de las propias, donde todo funcione ok. Borraremos todo R, RStudio y Python, volviendo a quedar todo ok luego de ser reinstalado. Suponemos que el problema es el software windows. ¿Será solución reparar las máquinas volviéndolas a sus estados de fábrica?
La última parte la aborda Victor y nos ofrece un metodo eficiente para ir obteniendo las áreas glaciares estáticas, para llegar rápido a las dinámicas.
library(rgee)
ee_Initialize("tarredwall@gmail.com", drive = TRUE)
## -- rgee 1.0.9 --------------------------------------- earthengine-api 0.1.259 --
## v email: tarredwall@gmail.com
## v Google Drive credentials:
v Google Drive credentials: FOUND
## v Initializing Google Earth Engine:
v Initializing Google Earth Engine: DONE!
##
v Earth Engine user: users/tarredwall
## --------------------------------------------------------------------------------
Drag Racing
Drag Racing
A partir del 15 de febrero de 2018, se debe utilizar la siguiente denominación:
Yo
I Región de Arica y Parinacota. Lunes 24 II Región de Tarapacá. Martes 25 III Región de Antofagasta. Miercoles 26 IV Región de Atacama. Jueves 27 V Región de Coquimbo. Viernes 28 VI Región de ValparaÃso. Lunes 31
Victor
VII Región Metropolitana de Santiago. Lunes 24 VIII Región del Libertador General Bernardo O’Higgins. Martes 25 IX Región del Maule. Miercoles 26 X Región del Ñuble. Jueves 27 XI Región del BiobÃo. Viernes 28 XII Región de La AraucanÃa. Lunes 31
Abner
XIII Región de Los RÃos. Miercoles 26 XIV Región de Los Lagos. Jueves 27 XV Región de Aysén del General Carlos Ibáñez del Campo. Viernes 28 XVI Región de Magallanes y la Antártica Chilena. Lunes 31
region_arica <- st_read("Regiones_separadas/Region_15.shp",
quiet = TRUE) %>%
sf_as_ee()
## Registered S3 method overwritten by 'geojsonsf':
## method from
## print.geojson geojson
arica <- region_arica$geometry()
Map$setCenter(lon = -69.7522, lat = -18.65665, zoom = 7)
Map$addLayer(arica)
start <- ee$Date("2019-01-01")
finish <- ee$Date("2019-04-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(arica)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
Map$setCenter(lon = -69.7522, lat = -18.65665, zoom = 7)
Map$addLayer(first, vizParams, "Landsat 8 image")
Construimos una imagen raster con una columna llamada nd con dos categorÃas para cada pixel: 0 si es rojo, 1 si es verde
getNDGI <- function(image)
{
image$normalizedDifference(c("B4", "B3")) > 0
}
ndgi <- getNDGI(first)
## Warning: Ops.ee.image.Image will be deprecated in rgee v.1.1.0. Please install
## rgeeExtra (https://github.com/r-earthengine/rgeeExtra). Deeply sorry for the
## inconveniences.
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
Map$setCenter(lon = -69.7522, lat = -18.65665, zoom = 7)
Map$addLayer(ndgi, ndgiParams, "NDGI")
glaciar_arica <- st_read("GlaciaresxRegion/Simple_ARICA_Y_PARINACOTA.shp",
quiet = TRUE) %>%
sf_as_ee()
glaciar_arica <- glaciar_arica$geometry()
Map$setCenter(lon = -69.7522, lat = -18.65665, zoom = 7)
Map$addLayer(glaciar_arica, ndgiParams, "NDGI")
ESTA ES LA IMAGEN SOBRE LA QUE EXTRAEREMOS EL PRIMER SET DE MUESTRAS
glaciares_adm_con_ngvi <- ndgi$clip(glaciar_arica)
Map$setCenter(lon = -69.80584, lat = -17.67837, zoom = 15)
Map$addLayer(glaciares_adm_con_ngvi, ndgiParams, "NDGI")
digresion
digresion
# region_arica <- st_read("Regiones_separadas/Region_15.shp",
# quiet = TRUE) %>%
# sf_as_ee()
# arica <- region_arica$geometry()
# glaciar_arica <- st_read("GlaciaresxRegion/Simple_ARICA_Y_PARINACOTA.shp",
# quiet = TRUE) %>%
# sf_as_ee()
# glaciar_arica <- glaciar_arica$geometry()
arica_sin_glacia <- arica$difference(glaciar_arica, ee$ErrorMargin(1))
Map$setCenter(lon = -69.80584, lat = -17.67837, zoom = 7)
Map$addLayer(arica_sin_glacia, ndgiParams, "NDGI")
ndvi_arica_sin_glaciares <- ndgi$clip(arica_sin_glacia)
Map$setCenter(lon = -69.80584, lat = -17.67837, zoom = 7)
Map$addLayer(ndvi_arica_sin_glaciares, ndgiParams, "NDGI")
7.1. pixeles rojos interiores
7.2. pixeles verdes exteriores
Necesitamos intersectar las regiones administrativas glaciares con nuestro raster ndvi y de ahi extraer las muestras de color rojo que simbolizaran los glaciares.
limites_glaciares_con_rasters <- ndgi$clip(glaciar_arica)
Map$setCenter(lon = -69.80584, lat = -17.67837, zoom = 15)
Map$addLayer(limites_glaciares_con_rasters , ndgiParams, "NDGI")
1 Muestreo
# region_arica <- st_read("Regiones_separadas/Region_15.shp", quiet = TRUE)
# region_arica
Los rojos interiores son glaciares, 0 = rojo y son llamados muestras_in_gee_rojas.
muestras_in <- ndgi$sampleRegions(
collection = ee$Feature(glaciar_arica),
scale = 100,
tileScale = 16,
geometries = TRUE
)
muestras_in_gee_rojas = muestras_in$filter(ee$Filter$eq('nd', 0))
Map$setCenter(lon = -69.80584, lat = -17.67837, zoom = 7)
Map$addLayer(
eeObject = muestras_in_gee_rojas,
visParams = {},
name = "puntos glaciares"
)
ndvi_arica_sin_glaciares <- ndgi$clip(arica_sin_glacia)
Map$setCenter(lon = -69.80584, lat = -17.67837, zoom = 7)
Map$addLayer(ndvi_arica_sin_glaciares, ndgiParams, "NDGI")
Los verdes exteriores no son glaciares 1 = verde
muestras_in <- ndgi$sampleRegions(
collection = ee$Feature(ndvi_arica_sin_glaciares),
scale = 1000,
tileScale = 16,
geometries = TRUE
)
muestras_out_gee_verdes = muestras_in$filter(ee$Filter$eq('nd', 1))
Map$setCenter(lon = -69.80584, lat = -17.67837, zoom = 7)
Map$addLayer(
eeObject = muestras_out_gee_verdes,
visParams = {},
name = "puntos no glaciares"
)
III debemos unir muestras y generar el random forest
union_total <- muestras_out_gee_verdes$merge(muestras_in_gee_rojas)
region_arica <- st_read("Regiones_separadas/Region_15.shp",
quiet = TRUE) %>%
sf_as_ee()
arica <- region_arica$geometry()
start <- ee$Date("2019-01-01")
finish <- ee$Date("2019-04-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(arica)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# Use these bands for prediction.
bands <- c("B2", "B3", "B4", "B8")
# This property of the table stores the land cover labels.
label <- "nd"
# Overlay the points on the imagery to get training.
training <- first$select(bands)$sampleRegions(
collection = union_total,
properties = list(label),
scale = 10
)
# Train a CART classifier with default parameters.
trained <- ee$Classifier$smileRandomForest(10)$train(training, label, bands)
# Classify the image with the same bands used for training.
classified1 <- first$select(bands)$classify(trained)
# Viz parameters.
# viz_img <- list(bands = c("B4", "B3", "B2"), max = 0.4)
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
viz_class <- list(palette = c("red", "green", "blue"), min = 0, max = 2)
Map$addLayer(first, vizParams, name = "image") +
Map$addLayer(classified1, viz_class, name = "classification")
18:29 18:30
Le aplicamos la matriz de confusion:
trainAccuracy = trained$confusionMatrix()
trainAccuracy$getInfo()
## [[1]]
## [1] 22 3
##
## [[2]]
## [1] 1 17754
18:40 18:43
region_arica <- st_read("Regiones_separadas/Region_15.shp",
quiet = TRUE) %>%
sf_as_ee()
arica <- region_arica$geometry()
start <- ee$Date("2019-01-01")
finish <- ee$Date("2019-04-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(arica)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# Use these bands for prediction.
bands <- c("B2", "B3", "B4", "B8")
# This property of the table stores the land cover labels.
label <- "nd"
# Overlay the points on the imagery to get training.
training <- first$select(bands)$sampleRegions(
collection = union_total,
properties = list(label),
scale = 10
)
# Train a CART classifier with default parameters.
trained <- ee$Classifier$smileCart(10)$train(training, label, bands)
# Classify the image with the same bands used for training.
classified <- first$select(bands)$classify(trained)
# Viz parameters.
# viz_img <- list(bands = c("B4", "B3", "B2"), max = 0.4)
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
viz_class <- list(palette = c("red", "green", "blue"), min = 0, max = 2)
Map$addLayer(first, vizParams, name = "image") +
Map$addLayer(classified, viz_class, name = "classification")
18:47 18:50
trainAccuracy = trained$confusionMatrix()
trainAccuracy$getInfo()
## [[1]]
## [1] 16 9
##
## [[2]]
## [1] 2 17753
18:51 18 53
region_arica <- st_read("Regiones_separadas/Region_15.shp",
quiet = TRUE) %>%
sf_as_ee()
arica <- region_arica$geometry()
start <- ee$Date("2019-01-01")
finish <- ee$Date("2019-04-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(arica)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# Use these bands for prediction.
bands <- c("B2", "B3", "B4", "B8")
# This property of the table stores the land cover labels.
label <- "nd"
# Overlay the points on the imagery to get training.
training <- first$select(bands)$sampleRegions(
collection = union_total,
properties = list(label),
scale = 10
)
classifier = ee$Classifier$libsvm(
kernelType = "RBF",
gamma = 0.5,
cost = 10
)
# Train a CART classifier with default parameters.
trained = classifier$train(training, label, bands)
# Classify the image with the same bands used for training.
classified <- first$select(bands)$classify(trained)
# Viz parameters.
# viz_img <- list(bands = c("B4", "B3", "B2"), max = 0.4)
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
viz_class <- list(palette = c("red", "green", "blue"), min = 0, max = 2)
Map$addLayer(first, vizParams, name = "image") +
Map$addLayer(classified, viz_class, name = "classification")
No se puede obtener la matriz de confusion para libsvm pues excede limites de memoria
# trainAccuracy = trained$confusionMatrix()
# trainAccuracy$getInfo()
mask_0 <- read_sf("GlaciaresxRegion/Simple_ARICA_Y_PARINACOTA.shp")
reg_15_2 <- mask_0 %>% dplyr::select(COD_GLA)
varia <- reg_15_2 %>%
sf_as_ee()
region_0 <- varia$geometry()
sale_4 <- classified1$clip(region_0)
puntos_r <- sale_4$select('classification')$eq(0)
areas_rojas = puntos_r$reduceRegions(
reducer= ee$Reducer$sum(),
collection= varia,
scale= 30
)
rojas <- areas_rojas$getInfo()
rojas1 <- as.data.frame(rojas)
puntos_v <- sale_4$select('classification')$eq(1)
areas_verdes = puntos_v$reduceRegions(
reducer= ee$Reducer$sum(),
collection= varia,
scale= 30
)
verdes <- areas_verdes$getInfo()
verdes1 <- as.data.frame(verdes)
rojas1$features.properties.COD_GLA.50
## [1] "CL101021034" "CL101021034"
rojas1$features.properties.sum.50
## [1] 0 0
r_v <- rbind(colnames(rojas1),rojas1,verdes1)
r_v <- r_v[1:4,]
r_v <- r_v[-3,]
r_v <- t(r_v)
r_v <- as.data.frame(r_v)
names(r_v)[1] <- "col1"
names(r_v)[2] <- "col2"
names(r_v)[3] <- "col3"
r_v$col4 <- r_v$col3
data1 <- filter(r_v, grepl("features.properties.COD_GLA",col1))
data1 <- as.data.frame(data1[,2])
data2 <- filter(r_v, grepl("features.properties.sum",col1))
data2 <- as.data.frame(data2[,c(2,3)])
data3 <- cbind(data1,data2)
kbl(data3) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
data1[, 2] | col2 | col3 | |
---|---|---|---|
features.properties.sum | CL101001010 | 14.7098039215686 | 88.3176470588235 |
features.properties.sum.1 | CL101010001 | 68.6235294117647 | 1146.45882352941 |
features.properties.sum.2 | CL101010006 | 8.89803921568627 | 174.352941176471 |
features.properties.sum.3 | CL101010009 | 4.64705882352941 | 213.039215686275 |
features.properties.sum.4 | CL101010012 | 117.701960784314 | 162.419607843137 |
features.properties.sum.5 | CL101010016 | 3.63137254901961 | 21.0156862745098 |
features.properties.sum.6 | CL101010002 | 8.65098039215686 | 16.6823529411765 |
features.properties.sum.7 | CL101001031 | 0.972549019607843 | 351.627450980392 |
features.properties.sum.8 | CL101001030 | 2.77254901960784 | 201.36862745098 |
features.properties.sum.9 | CL101001011 | 5.39607843137255 | 60.8 |
features.properties.sum.10 | CL101020003 | 1 | 50.2078431372549 |
features.properties.sum.11 | CL101001032 | 53.1450980392157 | 179.686274509804 |
features.properties.sum.12 | CL101030019 | 8.02745098039216 | 118.164705882353 |
features.properties.sum.13 | CL101010018 | 0.156862745098039 | 13.756862745098 |
features.properties.sum.14 | CL101010017 | 14.7882352941176 | 105.01568627451 |
features.properties.sum.15 | CL101010011 | 46.8862745098039 | 105.537254901961 |
features.properties.sum.16 | CL101001029 | 21.5843137254902 | 90.4470588235294 |
features.properties.sum.17 | CL101030020 | 0 | 16.6823529411765 |
features.properties.sum.18 | CL101000019 | 0 | 47.5098039215686 |
features.properties.sum.19 | CL101501019 | 0 | 8.86274509803921 |
features.properties.sum.20 | CL101501018 | 0 | 13.8470588235294 |
features.properties.sum.21 | CL101501017 | 0 | 406.901960784314 |
features.properties.sum.22 | CL101501016 | 0 | 302.623529411765 |
features.properties.sum.23 | CL101501014 | 0 | 121.58431372549 |
features.properties.sum.24 | CL101501015 | 0 | 23.2039215686274 |
features.properties.sum.25 | CL101501012 | 0 | 80.6274509803922 |
features.properties.sum.26 | CL101501013 | 0 | 13.9058823529412 |
features.properties.sum.27 | CL101501011 | 0 | 225.81568627451 |
features.properties.sum.28 | CL101501010 | 0 | 24.1098039215686 |
features.properties.sum.29 | CL101501009 | 0 | 300.964705882353 |
features.properties.sum.30 | CL101501008 | 0 | 91.6941176470588 |
features.properties.sum.31 | CL101501007 | 0 | 10.0588235294118 |
features.properties.sum.32 | CL101501006 | 0 | 10.6392156862745 |
features.properties.sum.33 | CL101501005 | 0 | 112.294117647059 |
features.properties.sum.34 | CL101501004 | 0 | 262.254901960784 |
features.properties.sum.35 | CL101501003 | 0 | 16.6078431372549 |
features.properties.sum.36 | CL101501002 | 0 | 147.466666666667 |
features.properties.sum.37 | CL101501001 | 0 | 505.835294117647 |
features.properties.sum.38 | CL101500007 | 0 | 41.5607843137255 |
features.properties.sum.39 | CL101500006 | 0 | 580.36862745098 |
features.properties.sum.40 | CL101500005 | 0 | 138.066666666667 |
features.properties.sum.41 | CL101500004 | 0 | 135.772549019608 |
features.properties.sum.42 | CL101500003 | 0 | 30.5294117647059 |
features.properties.sum.43 | CL101500002 | 0 | 22.9647058823529 |
features.properties.sum.44 | CL101500001 | 0 | 24.2666666666667 |
features.properties.sum.45 | CL101410005 | 0 | 47.2235294117647 |
features.properties.sum.46 | CL101410004 | 0 | 23.7176470588235 |
features.properties.sum.47 | CL101410003 | 0 | 77.7098039215687 |
features.properties.sum.48 | CL101030026 | 0 | 167.282352941176 |
features.properties.sum.49 | CL101021035 | 0 | 11.4117647058824 |
features.properties.sum.50 | CL101021034 | 0 | 7.15686274509804 |
features.properties.sum.51 | CL101021036 | 0 | 11.0078431372549 |
features.properties.sum.52 | CL101410002 | 0 | 30.3254901960784 |
features.properties.sum.53 | CL101410001 | 0 | 220.6 |
features.properties.sum.54 | CL101300047 | 0 | 24.7529411764706 |
features.properties.sum.55 | CL101300046 | 0 | 31.4352941176471 |
features.properties.sum.56 | CL101300045 | 0 | 33.5843137254902 |
features.properties.sum.57 | CL101300039 | 0 | 19.7960784313725 |
features.properties.sum.58 | CL101300044 | 0 | 5.83529411764706 |
features.properties.sum.59 | CL101300040 | 0 | 26.5372549019608 |
features.properties.sum.60 | CL101300043 | 0 | 19.0274509803922 |
features.properties.sum.61 | CL101300042 | 0 | 88.9647058823529 |
features.properties.sum.62 | CL101300041 | 0 | 10.2745098039216 |
features.properties.sum.63 | CL101300038 | 0 | 146.788235294118 |
features.properties.sum.64 | CL101300037 | 0 | 12.6823529411765 |
features.properties.sum.65 | CL101300036 | 0 | 153.941176470588 |
features.properties.sum.66 | CL101300035 | 0 | 9.86274509803921 |
features.properties.sum.67 | CL101300034 | 0 | 38.643137254902 |
features.properties.sum.68 | CL101300032 | 0 | 35.6235294117647 |
features.properties.sum.69 | CL101300031 | 0 | 5.71764705882353 |
features.properties.sum.70 | CL101300030 | 0 | 26.043137254902 |
features.properties.sum.71 | CL101300029 | 0 | 19.5529411764706 |
features.properties.sum.72 | CL101300028 | 0 | 49.7411764705882 |
features.properties.sum.73 | CL101300026 | 0 | 82.5137254901961 |
features.properties.sum.74 | CL101300027 | 0 | 8.84705882352941 |
features.properties.sum.75 | CL101300025 | 0 | 142.960784313726 |
features.properties.sum.76 | CL101300024 | 0 | 80.6705882352941 |
features.properties.sum.77 | CL101300023 | 0 | 77.5882352941176 |
features.properties.sum.78 | CL101300022 | 0 | 26.3058823529412 |
features.properties.sum.79 | CL101300021 | 0 | 178.309803921569 |
features.properties.sum.80 | CL101300020 | 0 | 6.17647058823529 |
features.properties.sum.81 | CL101300019 | 0 | 9.00392156862745 |
features.properties.sum.82 | CL101300018 | 0 | 81.1647058823529 |
features.properties.sum.83 | CL101300017 | 0 | 21.9686274509804 |
features.properties.sum.84 | CL101300016 | 0 | 39.1333333333333 |
features.properties.sum.85 | CL101300015 | 0 | 7.69803921568628 |
features.properties.sum.86 | CL101020006 | 0 | 40.0313725490196 |
features.properties.sum.87 | CL101020007 | 0 | 32.0549019607843 |
features.properties.sum.88 | CL101300014 | 0 | 103.380392156863 |
features.properties.sum.89 | CL101300013 | 0 | 182.917647058824 |
features.properties.sum.90 | CL101300011 | 0 | 53.3686274509804 |
features.properties.sum.91 | CL101300012 | 0 | 27.2392156862745 |
features.properties.sum.92 | CL101300010 | 0 | 26.9098039215686 |
features.properties.sum.93 | CL101300009 | 0 | 49.1882352941176 |
features.properties.sum.94 | CL101300008 | 0 | 47.5764705882353 |
features.properties.sum.95 | CL101300007 | 0 | 40.564705882353 |
features.properties.sum.96 | CL101300006 | 0 | 11.6549019607843 |
features.properties.sum.97 | CL101300005 | 0 | 36.1137254901961 |
features.properties.sum.98 | CL101300004 | 0 | 15.4078431372549 |
features.properties.sum.99 | CL101300003 | 0 | 39.9764705882353 |
features.properties.sum.100 | CL101300002 | 0 | 6.03921568627451 |
features.properties.sum.101 | CL101300001 | 0 | 41.2352941176471 |
features.properties.sum.102 | CL101202037 | 0 | 16.7137254901961 |
features.properties.sum.103 | CL101202007 | 0 | 96.4196078431372 |
features.properties.sum.104 | CL101202016 | 0 | 78.721568627451 |
features.properties.sum.105 | CL101202015 | 0 | 13.3803921568627 |
features.properties.sum.106 | CL101202014 | 0 | 10.1058823529412 |
features.properties.sum.107 | CL101201024 | 0 | 25.5960784313726 |
features.properties.sum.108 | CL101202003 | 0 | 72.2117647058824 |
features.properties.sum.109 | CL101202009 | 0 | 22.6745098039216 |
features.properties.sum.110 | CL101202013 | 0 | 5.94117647058823 |
features.properties.sum.111 | CL101202031 | 0.188235294117647 | 139.403921568627 |
features.properties.sum.112 | CL101202030 | 0 | 14.2509803921569 |
features.properties.sum.113 | CL101202034 | 0 | 119.58431372549 |
features.properties.sum.114 | CL101202033 | 0 | 22.9882352941177 |
features.properties.sum.115 | CL101202035 | 0 | 390.549019607843 |
features.properties.sum.116 | CL101202036 | 0 | 101.462745098039 |
features.properties.sum.117 | CL101020001 | 0 | 47.9960784313726 |
features.properties.sum.118 | CL101020002 | 0 | 20.5921568627451 |
features.properties.sum.119 | CL101001034 | 0 | 40.3137254901961 |
features.properties.sum.120 | CL101001035 | 0 | 14.9647058823529 |
features.properties.sum.121 | CL101202032 | 0 | 58.3098039215686 |
features.properties.sum.122 | CL101201023 | 0 | 39.0509803921569 |
features.properties.sum.123 | CL101202001 | 0 | 58.8509803921568 |
features.properties.sum.124 | CL101202026 | 0 | 51.3843137254902 |
features.properties.sum.125 | CL101202027 | 0 | 11.4156862745098 |
features.properties.sum.126 | CL101202029 | 0 | 8.53333333333333 |
features.properties.sum.127 | CL101202028 | 0 | 8.34509803921569 |
features.properties.sum.128 | CL101202022 | 0 | 11.5803921568627 |
features.properties.sum.129 | CL101200025 | 0 | 17.3098039215686 |
features.properties.sum.130 | CL101200032 | 0 | 25.9960784313726 |
features.properties.sum.131 | CL101200021 | 0 | 121.474509803922 |
features.properties.sum.132 | CL101200017 | 0 | 31.6823529411765 |
features.properties.sum.133 | CL101200012 | 0 | 25.9333333333333 |
features.properties.sum.134 | CL101200015 | 0 | 104.909803921569 |
features.properties.sum.135 | CL101200014 | 0 | 54.7803921568628 |
features.properties.sum.136 | CL101200013 | 0 | 208.623529411765 |
features.properties.sum.137 | CL101200008 | 0 | 16.1803921568627 |
features.properties.sum.138 | CL101200007 | 0 | 117.780392156863 |
features.properties.sum.139 | CL101200006 | 0 | 21.4117647058823 |
features.properties.sum.140 | CL101200005 | 0 | 32.2039215686274 |
features.properties.sum.141 | CL101200004 | 0 | 78.7490196078432 |
features.properties.sum.142 | CL101201003 | 0 | 75.6666666666667 |
features.properties.sum.143 | CL101201001 | 0 | 47.9960784313726 |
features.properties.sum.144 | CL101201002 | 0 | 12.6980392156863 |
features.properties.sum.145 | CL101200033 | 0 | 60.556862745098 |
features.properties.sum.146 | CL101200034 | 0 | 72.8509803921569 |
features.properties.sum.147 | CL101201011 | 0 | 38.4941176470588 |
features.properties.sum.148 | CL101201009 | 0 | 77.4039215686274 |
features.properties.sum.149 | CL101201012 | 0 | 110.317647058824 |
features.properties.sum.150 | CL101000007 | 0 | 52.7803921568627 |
features.properties.sum.151 | CL101000012 | 0 | 56.878431372549 |
features.properties.sum.152 | CL101000008 | 0 | 6.55294117647059 |
features.properties.sum.153 | CL101000003 | 0 | 49.2745098039215 |
features.properties.sum.154 | CL101000004 | 0 | 15.4705882352941 |
features.properties.sum.155 | CL101000005 | 0 | 6.65490196078431 |
features.properties.sum.156 | CL101000002 | 0 | 36.3098039215686 |
features.properties.sum.157 | CL101201016 | 0 | 34.4078431372549 |
features.properties.sum.158 | CL101201015 | 0 | 25.6941176470588 |
features.properties.sum.159 | CL101201018 | 0 | 57.443137254902 |
features.properties.sum.160 | CL101201017 | 0 | 4.85490196078431 |
features.properties.sum.161 | CL101201019 | 0 | 90.1333333333333 |
features.properties.sum.162 | CL101201020 | 0 | 44.2588235294118 |
features.properties.sum.163 | CL101201022 | 0 | 66.9764705882353 |
features.properties.sum.164 | CL101201021 | 0 | 31.4705882352941 |
features.properties.sum.165 | CL101201014 | 0 | 130.129411764706 |
features.properties.sum.166 | CL101201013 | 0 | 316.247058823529 |
features.properties.sum.167 | CL101000009 | 0 | 8.20392156862745 |
features.properties.sum.168 | CL101000010 | 0 | 11.9803921568627 |
features.properties.sum.169 | CL101000011 | 0 | 23.0627450980392 |
features.properties.sum.170 | CL101000014 | 0 | 46.478431372549 |
features.properties.sum.171 | CL101000013 | 0 | 38.9921568627451 |
features.properties.sum.172 | CL101000015 | 0 | 28.6235294117647 |
features.properties.sum.173 | CL101000020 | 0 | 747.180392156863 |
features.properties.sum.174 | CL101000021 | 0 | 40.2627450980392 |
features.properties.sum.175 | CL101000022 | 0 | 21.2 |
features.properties.sum.176 | CL101201004 | 0 | 83.4823529411765 |
features.properties.sum.177 | CL101201005 | 0.992156862745098 | 29.0352941176471 |
features.properties.sum.178 | CL101000018 | 0 | 49.1803921568628 |
features.properties.sum.179 | CL101201010 | 0 | 7.7921568627451 |
features.properties.sum.180 | CL101000016 | 0 | 5.16470588235294 |
features.properties.sum.181 | CL101000017 | 0 | 12.8509803921569 |
features.properties.sum.182 | CL101200022 | 0 | 17.5647058823529 |
features.properties.sum.183 | CL101200024 | 0 | 70.7764705882353 |
features.properties.sum.184 | CL101200023 | 0 | 32.2392156862745 |
features.properties.sum.185 | CL101200020 | 0 | 127.945098039216 |
features.properties.sum.186 | CL101200016 | 0 | 73.0862745098039 |
features.properties.sum.187 | CL101001005 | 0.72156862745098 | 47.2705882352941 |
features.properties.sum.188 | CL101001003 | 0 | 128.670588235294 |
features.properties.sum.189 | CL101001002 | 0 | 46.3294117647059 |
features.properties.sum.190 | CL101001001 | 0 | 22.9882352941176 |
features.properties.sum.191 | CL101001004 | 0 | 21.4705882352941 |
features.properties.sum.192 | CL101001009 | 0 | 63.0901960784314 |
features.properties.sum.193 | CL101001008 | 0 | 4.76078431372549 |
features.properties.sum.194 | CL101001007 | 0 | 5.56862745098039 |
features.properties.sum.195 | CL101001019 | 0 | 40.2 |
features.properties.sum.196 | CL101001018 | 0 | 14.1647058823529 |
features.properties.sum.197 | CL101001020 | 0 | 49.643137254902 |
features.properties.sum.198 | CL101001022 | 0 | 42.9803921568628 |
features.properties.sum.199 | CL101001021 | 0 | 129.254901960784 |
features.properties.sum.200 | CL101010003 | 0 | 53.7529411764706 |
features.properties.sum.201 | CL101010004 | 0 | 37.0627450980392 |
features.properties.sum.202 | CL101010005 | 0 | 39.3921568627451 |
features.properties.sum.203 | CL101010008 | 0 | 124.792156862745 |
features.properties.sum.204 | CL101010015 | 0 | 169.090196078431 |
features.properties.sum.205 | CL101010020 | 0 | 63.8235294117647 |
features.properties.sum.206 | CL101010021 | 0 | 128.164705882353 |
features.properties.sum.207 | CL101021013 | 0 | 265.352941176471 |
features.properties.sum.208 | CL101021014 | 0 | 212.972549019608 |
features.properties.sum.209 | CL101021011 | 0 | 145.439215686274 |
features.properties.sum.210 | CL101021020 | 0 | 767.474509803922 |
features.properties.sum.211 | CL101021012 | 0 | 36.0274509803922 |
features.properties.sum.212 | CL101021005 | 0 | 96.9686274509804 |
features.properties.sum.213 | CL101021021 | 0 | 169.454901960784 |
features.properties.sum.214 | CL101021022 | 0 | 74.5607843137255 |
features.properties.sum.215 | CL101021023 | 0 | 220.745098039216 |
features.properties.sum.216 | CL101021024 | 0 | 16.3019607843137 |
features.properties.sum.217 | CL101021025 | 0 | 11.8901960784314 |
features.properties.sum.218 | CL101021026 | 0 | 11.5529411764706 |
features.properties.sum.219 | CL101030012 | 0 | 98.6039215686274 |
features.properties.sum.220 | CL101030014 | 0 | 109.333333333333 |
features.properties.sum.221 | CL101030017 | 0 | 8.92549019607843 |
features.properties.sum.222 | CL101021030 | 0 | 70.7843137254902 |
features.properties.sum.223 | CL101021031 | 0 | 164.796078431373 |
features.properties.sum.224 | CL101021033 | 0 | 10.9686274509804 |
features.properties.sum.225 | CL101021032 | 0 | 310.21568627451 |
features.properties.sum.226 | CL101030011 | 0 | 104.909803921569 |
features.properties.sum.227 | CL101030009 | 0 | 135.6 |
features.properties.sum.228 | CL101030010 | 0 | 484.788235294117 |
features.properties.sum.229 | CL101030007 | 0 | 93.2392156862745 |
features.properties.sum.230 | CL101030006 | 0 | 23.5411764705882 |
features.properties.sum.231 | CL101030004 | 0 | 6.06666666666667 |
features.properties.sum.232 | CL101030001 | 0 | 161.494117647059 |
features.properties.sum.233 | CL101030002 | 0 | 184.992156862745 |
features.properties.sum.234 | CL101030003 | 0 | 19.8980392156863 |
features.properties.sum.235 | CL101021027 | 0 | 19.6196078431373 |
features.properties.sum.236 | CL101030005 | 0 | 6.46666666666667 |
features.properties.sum.237 | CL101030025 | 0 | 167.596078431373 |
features.properties.sum.238 | CL101030024 | 0 | 27.8 |
features.properties.sum.239 | CL101030023 | 0 | 24.0117647058824 |
features.properties.sum.240 | CL101030022 | 0 | 57.3529411764706 |
features.properties.sum.241 | CL101030021 | 0 | 39.2470588235294 |
features.properties.sum.242 | CL101040010 | 0 | 5.65098039215686 |
features.properties.sum.243 | CL101410006 | 0 | 7.51764705882353 |
features.properties.sum.244 | CL101300033 | 0 | 18.2117647058823 |
features.properties.sum.245 | CL101021019 | 0 | 460.937254901961 |
features.properties.sum.246 | CL101001023 | 13.121568627451 | 630.4 |
features.properties.sum.247 | CL101010007 | 18.1372549019608 | 140.662745098039 |
features.properties.sum.248 | CL101010013 | 102.537254901961 | 557.658823529412 |
features.properties.sum.249 | CL101010014 | 16.6705882352941 | 411.498039215686 |
features.properties.sum.250 | CL101021010 | 9.16470588235294 | 89.8274509803921 |
features.properties.sum.251 | CL101021004 | 26.0117647058824 | 716.745098039216 |
features.properties.sum.252 | CL101010026 | 40.0039215686274 | 555.819607843138 |
features.properties.sum.253 | CL101021007 | 8.75294117647059 | 551.666666666667 |
features.properties.sum.254 | CL101010022 | 7.38823529411765 | 577.482352941177 |
features.properties.sum.255 | CL101021008 | 3.10980392156863 | 342.776470588235 |
features.properties.sum.256 | CL101010024 | 0 | 271.811764705882 |
features.properties.sum.257 | CL101010025 | 0 | 259.737254901961 |
features.properties.sum.258 | CL101030008 | 25.5294117647059 | 98.9686274509804 |
features.properties.sum.259 | CL101021029 | 27.8235294117647 | 169.835294117647 |
features.properties.sum.260 | CL101030013 | 6 | 85.7803921568628 |
features.properties.sum.261 | CL101030016 | 0 | 9.71372549019608 |
features.properties.sum.262 | CL101030018 | 0 | 17.721568627451 |
features.properties.sum.263 | CL101030015 | 2.70588235294118 | 290.086274509804 |
features.properties.sum.264 | CL101202018 | 0.00392156862745098 | 36.956862745098 |
features.properties.sum.265 | CL101202002 | 0 | 43.4549019607843 |
features.properties.sum.266 | CL101202025 | 0 | 31.3607843137255 |
features.properties.sum.267 | CL101202006 | 7.47450980392157 | 35.8823529411765 |
features.properties.sum.268 | CL101202010 | 150.070588235294 | 210.423529411765 |
features.properties.sum.269 | CL101202017 | 5.33725490196078 | 45.8823529411765 |
features.properties.sum.270 | CL101202021 | 0 | 30.6666666666667 |
features.properties.sum.271 | CL101202023 | 0 | 15.7843137254902 |
features.properties.sum.272 | CL101000001 | 0 | 26.9921568627451 |
features.properties.sum.273 | CL101000006 | 49.4156862745098 | 141.356862745098 |
features.properties.sum.274 | CL101200001 | 60.1333333333333 | 65.6980392156863 |
features.properties.sum.275 | CL101021028 | 3.55686274509804 | 14.6039215686275 |
features.properties.sum.276 | CL101021002 | 1.04313725490196 | 132.333333333333 |
features.properties.sum.277 | CL101021017 | 2.01176470588235 | 83.5764705882353 |
features.properties.sum.278 | CL101001025 | 3.7921568627451 | 233.278431372549 |
features.properties.sum.279 | CL101001015 | 4.8156862745098 | 162.078431372549 |
features.properties.sum.280 | CL101001016 | 0.333333333333333 | 86.4 |
features.properties.sum.281 | CL101001013 | 1.07450980392157 | 17.4823529411765 |
features.properties.sum.282 | CL101001012 | 9.05098039215686 | 85.9529411764706 |
features.properties.sum.283 | CL101001014 | 7.94117647058823 | 134.713725490196 |
features.properties.sum.284 | CL101001006 | 0 | 37.878431372549 |
features.properties.sum.285 | CL101202011 | 0 | 13.7529411764706 |
features.properties.sum.286 | CL101202008 | 1.18823529411765 | 21.1686274509804 |
features.properties.sum.287 | CL101202020 | 1 | 21.2156862745098 |
features.properties.sum.288 | CL101202024 | 0 | 33.6862745098039 |
features.properties.sum.289 | CL101201006 | 37.843137254902 | 118.733333333333 |
features.properties.sum.290 | CL101201007 | 40.6549019607843 | 62.8156862745098 |
features.properties.sum.291 | CL101201008 | 15.1019607843137 | 72.2196078431372 |
features.properties.sum.292 | CL101200003 | 4.22352941176471 | 16.6941176470588 |
features.properties.sum.293 | CL101200002 | 34.9843137254902 | 52.8901960784314 |
features.properties.sum.294 | CL101200018 | 7.08627450980392 | 109.541176470588 |
features.properties.sum.295 | CL101200011 | 11.8588235294118 | 38.3921568627451 |
features.properties.sum.296 | CL101200019 | 7.43529411764706 | 27.4509803921569 |
features.properties.sum.297 | CL101200026 | 1.87450980392157 | 21.3176470588235 |
features.properties.sum.298 | CL101200028 | 14.7450980392157 | 30.0941176470588 |
features.properties.sum.299 | CL101200027 | 8.86666666666667 | 11.9921568627451 |
features.properties.sum.300 | CL101200029 | 249.8 | 303.517647058824 |
features.properties.sum.301 | CL101202005 | 7.6156862745098 | 38.4901960784314 |
features.properties.sum.302 | CL101202019 | 0.0509803921568627 | 19.8901960784314 |
features.properties.sum.303 | CL101021003 | 0 | 13.8039215686274 |
features.properties.sum.304 | CL101021001 | 0 | 105.776470588235 |
features.properties.sum.305 | CL101010023 | 0.309803921568627 | 89.7254901960784 |
features.properties.sum.306 | CL101021015 | 4.15686274509804 | 150.352941176471 |
features.properties.sum.307 | CL101010019 | 9.64313725490196 | 84.5568627450981 |
features.properties.sum.308 | CL101021016 | 10.3411764705882 | 35.7529411764706 |
features.properties.sum.309 | CL101001028 | 4.00392156862745 | 41.7098039215686 |
features.properties.sum.310 | CL101001026 | 6.65098039215686 | 134.305882352941 |
features.properties.sum.311 | CL101001027 | 6.48235294117647 | 68.1137254901961 |
features.properties.sum.312 | CL101001024 | 0 | 55.6627450980392 |
features.properties.sum.313 | CL101001033 | 65.3176470588235 | 188.521568627451 |
features.properties.sum.314 | CL101020004 | 30.2549019607843 | 52.6745098039216 |
features.properties.sum.315 | CL101020005 | 13.321568627451 | 50.156862745098 |
features.properties.sum.316 | CL101021009 | 18.443137254902 | 138.247058823529 |
features.properties.sum.317 | CL101021006 | 10.0509803921569 | 351.890196078431 |
features.properties.sum.318 | CL101200031 | 8.85098039215686 | 57.9019607843137 |
features.properties.sum.319 | CL101200030 | 12.1647058823529 | 409.529411764706 |
features.properties.sum.320 | CL101200010 | 34.043137254902 | 53.0156862745098 |
features.properties.sum.321 | CL101200009 | 36.5921568627451 | 203.905882352941 |
features.properties.sum.322 | CL101202004 | 1.13725490196078 | 12.7450980392157 |
features.properties.sum.323 | CL101202012 | 0.662745098039216 | 20.8470588235294 |
features.properties.sum.324 | CL101001017 | 5.22745098039216 | 217.407843137255 |
features.properties.sum.325 | CL101010010 | 19.2509803921569 | 174.894117647059 |
features.properties.sum.326 | CL101021018 | 13.3019607843137 | 116.592156862745 |