library(wooldridge)
data("hprice1")
head(hprice1,n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
Modelo_Estimado <- lm(formula = price~lotsize+sqrft+bdrms, data = hprice1)
stargazer::stargazer(Modelo_Estimado,type = "text")
##
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## lotsize 0.002***
## (0.001)
##
## sqrft 0.123***
## (0.013)
##
## bdrms 13.853
## (9.010)
##
## Constant -21.770
## (29.475)
##
## -----------------------------------------------
## Observations 88
## R2 0.672
## Adjusted R2 0.661
## Residual Std. Error 59.833 (df = 84)
## F Statistic 57.460*** (df = 3; 84)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
options(scipen = 999999)
Matriz.X <- model.matrix(Modelo_Estimado)
Matriz.XX <- t(Matriz.X)%*%Matriz.X
stargazer::stargazer(Matriz.XX,type = "text")
##
## ==============================================================
## (Intercept) lotsize sqrft bdrms
## --------------------------------------------------------------
## (Intercept) 88 793,748 177,205 314
## lotsize 793,748 16,165,159,010 1,692,290,257 2,933,767
## sqrft 177,205 1,692,290,257 385,820,561 654,755
## bdrms 314 2,933,767 654,755 1,182
## --------------------------------------------------------------
Sn <- solve(diag(sqrt(diag(Matriz.XX))))
stargazer::stargazer(Sn,type = "text")
##
## ==========================
## 0.107 0 0 0
## 0 0.00001 0 0
## 0 0 0.0001 0
## 0 0 0 0.029
## --------------------------
XX.Normal <- (Sn%*%Matriz.XX)%*%Sn
stargazer::stargazer(XX.Normal, type = "text", digits = 4)
##
## ===========================
## 1 0.6655 0.9617 0.9736
## 0.6655 1 0.6776 0.6712
## 0.9617 0.6776 1 0.9696
## 0.9736 0.6712 0.9696 1
## ---------------------------
Lambdas <- eigen(XX.Normal,symmetric = T)
stargazer::stargazer(Lambdas$values, type = "text")
##
## =======================
## 3.482 0.455 0.039 0.025
## -----------------------
k <- sqrt(max(Lambdas$values)/min(Lambdas$values))
print(k)
## [1] 11.86778
El indice de condición K es menor a 20 por lo que hay evidencia de que los regresores carecen o tienen leve colinealidad.
Zn<-scale(Matriz.X[,-1])
stargazer::stargazer(head(Zn,n=5),type = "text")
##
## =======================
## lotsize sqrft bdrms
## -----------------------
## 1 -0.284 0.735 0.513
## 2 0.087 0.108 -0.675
## 3 -0.375 -1.108 -0.675
## 4 -0.434 -0.980 -0.675
## 5 -0.287 0.867 0.513
## -----------------------
## Calculo de R
n<-nrow(Zn)
R<-(t(Zn)%*%Zn)*(1/(n-1))
stargazer::stargazer(R,type = "text")
##
## ===========================
## lotsize sqrft bdrms
## ---------------------------
## lotsize 1 0.184 0.136
## sqrft 0.184 1 0.531
## bdrms 0.136 0.531 1
## ---------------------------
## Determinante de R
determinante_R<-det(R)
print(determinante_R)
## [1] 0.6917931
## Estadistico de FG
m<-ncol(Matriz.X[,-1])
n<-nrow(Matriz.X[,-1])
FG <--(n-1-(2*m+5)/6)*log(determinante_R)
print(FG)
## [1] 31.38122
## Valor critico
gl<-m*(m-1)/2
VC<-qchisq(p = 0.95,df = gl)
print(VC)
## [1] 7.814728
como \(FG\) > \(VC\) hay evidencia de colinealidad en los regresores, por lo tanto, se rechaza la hipotesis Nula
options(scipen = 99999)
library(fastGraph)
shadeDist(xshade = FG, ddist = "dchisq",parm1 = gl,lower.tail = F,sub=paste("VC:", VC, "FG",FG), col = c("red","turquoise"))
inversa.R<-solve(R)
VIF <- diag(inversa.R)
print(VIF)
## lotsize sqrft bdrms
## 1.037211 1.418654 1.396663
#Gráfica
library(mctest)
mc.plot(mod = Modelo_Estimado, vif = 2)
Los VIF estan por debajo de 2, por lo tanto los regresores presenta colinealidad leve.