TAREA 1 - MÓDULO 2

library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.3     v purrr   0.3.4
## v tibble  3.1.0     v dplyr   1.0.5
## v tidyr   1.1.3     v stringr 1.4.0
## v readr   1.4.0     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(sf)
## Linking to GEOS 3.9.0, GDAL 3.2.1, PROJ 7.2.1
comunas_caba <- st_read("comunas_caba.geojson")
## Reading layer `comunas' from data source `C:\Users\User\Desktop\Tarea M2\comunas_caba.geojson' using driver `GeoJSON'
## Simple feature collection with 15 features and 6 fields
## Geometry type: MULTIPOLYGON
## Dimension:     XY
## Bounding box:  xmin: -58.53152 ymin: -34.70529 xmax: -58.33515 ymax: -34.52649
## Geodetic CRS:  WGS 84
summary(comunas_caba)
##    BARRIOS            PERIMETRO          AREA             COMUNAS    
##  Length:15          Min.   :10486   Min.   : 6317265   Min.   : 1.0  
##  Class :character   1st Qu.:17532   1st Qu.: 9636965   1st Qu.: 4.5  
##  Mode  :character   Median :19988   Median :14322897   Median : 8.0  
##                     Mean   :20587   Mean   :13604581   Mean   : 8.0  
##                     3rd Qu.:21790   3rd Qu.:16175589   3rd Qu.:11.5  
##                     Max.   :36102   Max.   :22216902   Max.   :15.0  
##        ID          OBJETO                   geometry 
##  Min.   : 1.0   Length:15          MULTIPOLYGON :15  
##  1st Qu.: 4.5   Class :character   epsg:4326    : 0  
##  Median : 8.0   Mode  :character   +proj=long...: 0  
##  Mean   : 8.0                                        
##  3rd Qu.:11.5                                        
##  Max.   :15.0
class(comunas_caba)
## [1] "sf"         "data.frame"
ggplot(comunas_caba)+
  geom_sf()

MAPEO DE UNA VARIABLE NUMÉRICA

ggplot(comunas_caba)+
  geom_sf(aes(fill=AREA), color="white")+
    labs(title = "Comunas CABA",
         subtitle = "Área")

MAPEO DE UNA VARIABLE CATEGÓRICA

comunas_caba <- mutate(comunas_caba, CATEGORIA=if_else(AREA>=10000000, "MAYOR A 14000000", "MENOR A 14000000"))
ggplot(comunas_caba)+
  geom_sf(aes(fill=CATEGORIA))+
    labs(title = "Comunas CABA",
         subtitle = "Área")