# install.packages("sjlabelled")
library(sjlabelled)
TY1<- read_spss("tcs2018.sav")
# View(TY1)
names(TY1)
##   [1] "ID"       "A1"       "A2"       "A3"       "A3.a"     "A4a.1"   
##   [7] "A4b"      "A5"       "A5.a"     "A6"       "A6.a"     "A7"      
##  [13] "A7.a"     "A8"       "A8.a"     "B1"       "B2.1"     "B2.2"    
##  [19] "B3"       "B4.1"     "B4.2"     "B5"       "B6.1"     "B6.2"    
##  [25] "B7"       "B8.1"     "B8.2"     "B8.3"     "B8.4"     "B8.5"    
##  [31] "B8.6"     "B8.7"     "B8.8"     "B8.9"     "B8.10"    "B8.11"   
##  [37] "B8.12"    "B8.13"    "B8.14"    "B8.15"    "B8.16"    "B8.17"   
##  [43] "B8.18"    "B8.19"    "B8.20"    "B8.21"    "B8.22"    "B8.23"   
##  [49] "B8.24"    "B8.25"    "B8.26"    "B8.27"    "B8.28"    "B8.29"   
##  [55] "B8.30"    "B8.31"    "B8.32"    "B8.33"    "B8.34"    "B8.35"   
##  [61] "B8.36"    "B8.37"    "B8.38"    "B8.88"    "B7.a"     "B8.a"    
##  [67] "C1"       "C2.1"     "C2.2"     "C3.1"     "C3.2"     "C3.3"    
##  [73] "C3.4"     "C3.5"     "C3.6"     "C3.7"     "C3.8"     "C3.9"    
##  [79] "C3.10"    "C3.11"    "C3.12"    "C3.13"    "C3.14"    "C3.15"   
##  [85] "C3.16"    "C3.17"    "C3.18"    "C3.19"    "C3.20"    "C3.21"   
##  [91] "C3.22"    "C3.23"    "C3.24"    "C3.25"    "C3.26"    "C3.27"   
##  [97] "C3.28"    "C3.88"    "C3.a"     "D1"       "D2"       "D3"      
## [103] "D4"       "D5.1.a"   "D5.1.b"   "D5.2.a"   "D5.2.b"   "D5.3.a"  
## [109] "D5.3.b"   "D6.1"     "D6.2"     "D6.3"     "D6.4.a"   "D6.4.b"  
## [115] "D6.4.c"   "D6.5"     "D6.6"     "D7.1"     "D7.2"     "D7.3"    
## [121] "D7.4"     "D7.5"     "D7.6"     "D7.7"     "D7.8"     "D7.9"    
## [127] "D7.10"    "D7.11"    "D7.12"    "D7.13"    "D7.14"    "D7.15"   
## [133] "D7.16"    "D7.17"    "D7.18"    "D7.19"    "D7.20"    "D7.21"   
## [139] "D7.22"    "D7.23"    "D7.24"    "D7.25"    "D7.26"    "D7.27"   
## [145] "D7.28"    "D7.29"    "D7.30"    "D7.31"    "D7.32"    "D7.33"   
## [151] "D7.34"    "D7.35"    "D7.36"    "D7.37"    "D7.38"    "D7.39"   
## [157] "D7.40"    "D7.41"    "D7.42"    "D7.43"    "D7.44"    "D7.45"   
## [163] "D7.46"    "D7.47"    "D7.48"    "D7.49"    "D7.88"    "D7.a"    
## [169] "E1a"      "E1b.1"    "E1b.2"    "E2a"      "E2b.1"    "E2b.2"   
## [175] "E3.1"     "E3.2"     "E3.3"     "E3.4"     "E3.5"     "E3.6"    
## [181] "E3.7"     "E3.8"     "E3.9"     "E3.10"    "E3.11"    "E3.12"   
## [187] "E3.13"    "E3.14"    "E3.15"    "E3.16"    "E3.17"    "E3.18"   
## [193] "E3.19"    "E3.20"    "E3.21"    "E3.22"    "E3.23"    "E3.24"   
## [199] "E3.25"    "E3.26"    "E3.27"    "E3.28"    "E3.29"    "E3.30"   
## [205] "E3.31"    "E3.88"    "E3.a"     "F1a"      "F1b.1"    "F1b.2"   
## [211] "F1c.1"    "F1c.2"    "F1c.3"    "F1c.4"    "F1c.5"    "F1c.6"   
## [217] "F1c.7"    "F1c.8"    "F1c.9"    "F1c.10"   "F1c.11"   "F1c.12"  
## [223] "F1c.13"   "F1c.14"   "F1c.15"   "F1c.16"   "F1c.17"   "F1c.18"  
## [229] "F1c.19"   "F1c.20"   "F1c.21"   "F1c.22"   "F1c.23"   "F1c.24"  
## [235] "F1c.25"   "F1c.26"   "F1c.27"   "F1c.28"   "F1c.29"   "F1c.30"  
## [241] "F1c.31"   "F1c.32"   "F1c.33"   "F1c.34"   "F1c.35"   "F1c.88"  
## [247] "F1c.a"    "F2a"      "F2b.1"    "F2b.2"    "F2c.1"    "F2c.2"   
## [253] "F2c.3"    "F2c.4"    "F2c.5"    "F2c.6"    "F2c.7"    "F2c.8"   
## [259] "F2c.9"    "F2c.10"   "F2c.11"   "F2c.12"   "F2c.13"   "F2c.14"  
## [265] "F2c.15"   "F2c.16"   "F2c.17"   "F2c.18"   "F2c.19"   "F2c.20"  
## [271] "F2c.21"   "F2c.22"   "F2c.23"   "F2c.24"   "F2c.25"   "F2c.26"  
## [277] "F2c.27"   "F2c.28"   "F2c.29"   "F2c.30"   "F2c.31"   "F2c.32"  
## [283] "F2c.33"   "F2c.34"   "F2c.35"   "F2c.36"   "F2c.37"   "F2c.38"  
## [289] "F2c.39"   "F2c.40"   "F2c.41"   "F2c.42"   "F2c.43"   "F2c.88"  
## [295] "F2c.a"    "F3.1"     "F3.2"     "F3.3"     "F3.4"     "F3.5"    
## [301] "F3.6"     "F3.7"     "F3.8"     "F3.9"     "F3.10"    "F3.11"   
## [307] "F3.12"    "F3.13"    "F3.14"    "F3.15"    "F3.16"    "F3.17"   
## [313] "F3.18"    "F3.19"    "F3.20"    "F3.21"    "F3.22"    "F3.23"   
## [319] "F3.24"    "F3.25"    "F3.26"    "F3.88"    "F3.a"     "G1a"     
## [325] "G1b"      "G1c"      "G1d"      "G1e"      "G1f"      "G2.1.a.1"
## [331] "G2.1.a.2" "G2.1.b.1" "G2.1.b.2" "G2.1.c.1" "G2.1.c.2" "G2.2.a.1"
## [337] "G2.2.a.2" "G2.2.b.1" "G2.2.b.2" "G2.2.c.1" "G2.2.c.2" "H1"      
## [343] "H2.1"     "H2.2"     "H3.1"     "H3.2"     "H3.3"     "H3.4"    
## [349] "H3.5"     "H3.6"     "H3.7"     "H3.8"     "H3.9"     "H3.10"   
## [355] "H3.11"    "H3.12"    "H3.13"    "H3.14"    "H3.15"    "H3.16"   
## [361] "H3.17"    "H3.18"    "H3.19"    "H3.20"    "H3.21"    "H3.22"   
## [367] "H3.23"    "H3.24"    "H3.25"    "H3.26"    "H3.27"    "H3.28"   
## [373] "H3.29"    "H3.30"    "H3.31"    "H3.32"    "H3.33"    "H3.34"   
## [379] "H3.35"    "H3.36"    "H3.37"    "H3.38"    "H3.39"    "H3.40"   
## [385] "H3.41"    "H3.42"    "H3.43"    "H3.44"    "H3.45"    "H3.46"   
## [391] "H3.47"    "H3.48"    "H3.49"    "H3.50"    "H3.51"    "H3.52"   
## [397] "H3.53"    "H3.54"    "H3.55"    "H3.56"    "H3.57"    "H3.88"   
## [403] "H4.1"     "H4.2"     "H4.3"     "H3.a"     "I1.1.1"   "I1.1.2"  
## [409] "I1.1.3"   "I1.1.4"   "I1.1.5"   "I1.1.6"   "I1.1.7"   "I1.1.88" 
## [415] "I1.1.90"  "I1.2.1"   "I1.2.2"   "I1.2.3"   "I1.2.4"   "I1.2.5"  
## [421] "I1.2.6"   "I1.2.7"   "I1.2.88"  "I1.2.90"  "I2a"      "I2b.1"   
## [427] "I2b.2"    "I2c.1"    "I2c.2"    "I2c.3"    "I2c.4"    "I2c.5"   
## [433] "I2c.6"    "I2c.7"    "I2c.8"    "I2c.9"    "I2c.10"   "I2c.11"  
## [439] "I2c.12"   "I2c.13"   "I2c.14"   "I2c.15"   "I2c.16"   "I2c.88"  
## [445] "I2d.1"    "I2d.2"    "I2d.3"    "I2d.4"    "I2d.5"    "I2d.6"   
## [451] "I2d.7"    "I2d.8"    "I2d.9"    "I2d.10"   "I2d.11"   "I2d.12"  
## [457] "I2d.88"   "I2e"      "I2e.a"    "I2f.1"    "I2f.2"    "I2f.3"   
## [463] "I2f.4"    "I2f.5"    "I2f.6"    "I2f.7"    "I2f.8"    "I2f.9"   
## [469] "I2f.10"   "I3a"      "I3b.1"    "I3b.2"    "I3c"      "I3d.1"   
## [475] "I3d.2"    "I3d.3"    "I3d.4"    "I3d.5"    "I3d.6"    "I3d.7"   
## [481] "I3d.8"    "I3d.9"    "I3d.10"   "I3d.11"   "I3d.12"   "I3d.13"  
## [487] "I3d.14"   "I3d.15"   "I3d.16"   "I3d.17"   "I3d.88"   "I3e.1"   
## [493] "I3e.2"    "I3e.3"    "I3e.4"    "I3f"      "I1.2.a"   "I1.1.a"  
## [499] "I2c.a"    "I2d.a"    "I3c.a"    "I3d.a"    "J1"       "J1.a"    
## [505] "J2"       "J2.a"     "J3"       "J3.a"     "J4.1"     "J4.2"    
## [511] "J4.3"     "J4.4"     "J4.5"     "J5a.1"    "J5a.2"    "J5a.3"   
## [517] "J5a.4"    "J5a.5"    "J5a.6"    "J5a.7"    "J5a.8"    "J5a.9"   
## [523] "J5a.10"   "J5a.88"   "J5a.90"   "J5a.a"    "J5b.1"    "J5b.2"   
## [529] "J5b.3"    "J5b.4"    "J5b.5"    "J5b.6"    "J5b.88"   "J5b.90"  
## [535] "J5b.101"  "J5b.a"    "K1.1"     "K1.2"     "K1.3"     "K1.4"    
## [541] "K1.5"     "K1.6"     "K1.7"     "L1a"      "L1b"      "L1c"     
## [547] "L2.1"     "L2.2"     "L2.3"     "L2.4"     "L2.5"     "L2.6"    
## [553] "L3"       "L4"       "L5"       "L6"       "L7a"      "L7b"     
## [559] "L7c"      "L8"       "M1"       "M2"       "M3a"      "M3b"     
## [565] "M4"       "M5.1"     "M5.2"     "N1a"      "N1b"      "N1c"     
## [571] "N2.1"     "N2.2"     "N2.3"     "N2.4"     "N2.5"     "N2.6"    
## [577] "N2.7"     "N2.8"     "O1a"      "O1a.a"    "O1b"      "O2"      
## [583] "O3a"      "O3b.1"    "O3b.2"    "O3b.3"    "O3b.4"    "O3b.5"   
## [589] "O3b.6"    "O3b.7"    "O3b.8"    "O3b.9"    "O3b.10"   "O3b.90"  
## [595] "O3c.1"    "O3c.2"    "O3c.3"    "O3c.4"    "O3c.5"    "O3c.6"   
## [601] "O3c.7"    "O3c.8"    "O3c.9"    "O3c.10"   "O3c.90"   "O4a.1"   
## [607] "O4a.2"    "O4a.3"    "O4a.4"    "O4a.5"    "O4a.6"    "O4a.7"   
## [613] "O4a.8"    "O4a.9"    "O4a.10"   "O4a.90"   "O4b.1"    "O4b.2"   
## [619] "O4b.3"    "O4b.4"    "O4b.5"    "O4b.6"    "O4b.7"    "O4b.8"   
## [625] "O4b.9"    "O4b.10"   "O4b.90"   "O5"       "O6"       "O7a"     
## [631] "O8"       "O9"       "O9.a"     "O10"      "P1.1"     "P1.2"    
## [637] "P1.3"     "P1.4"     "P1.5"     "P1.6"     "P1.7"     "P1.8"    
## [643] "P1.9"     "P1.10"    "P2.1"     "P2.2"     "P2.3"     "P2.4"    
## [649] "P2.5"     "P2.6"     "P2.7"     "P2.8"     "P2.9"     "P2.10"   
## [655] "P3.1"     "P3.2"     "P3.3"     "P3.4"     "P3.5"     "P4"      
## [661] "P5"       "Q1"       "Q1.a"     "Q2"       "Q3a"      "Q3b"     
## [667] "Q2.a"     "Q3a.a"    "Q3b.a"    "Q4"       "RA2"      "RRA2"    
## [673] "Rcity"    "ORcity1"  "RA8"      "RB2"      "RRB2"     "RB4"     
## [679] "RRB4"     "RB6"      "RRB6"     "RC2"      "RRC2"     "RD5.1.a" 
## [685] "RD5.1.b"  "RD5.2.a"  "RD5.2.b"  "RD5.3.a"  "RD5.3.b"  "RD6.6"   
## [691] "RE1b"     "RRE1b"    "RE2b"     "RRE2b"    "RF1b"     "RRF1b"   
## [697] "RF2b"     "RRF2b"    "RG1a"     "RG1b"     "RG1c"     "RG1e"    
## [703] "RG2.1.a"  "RRG2.1.a" "RG2.1.b"  "RRG2.1.b" "RG2.1.c"  "RRG2.1.c"
## [709] "RG2.2.a"  "RRG2.2.a" "RG2.2.b"  "RRG2.2.b" "RG2.2.c"  "RRG2.2.c"
## [715] "RH2"      "RRH2"     "RI2b"     "RRI2b"    "RI2e"     "RI3b"    
## [721] "RRI3b"    "RI3c"     "RJ4.1"    "RJ4.2"    "RJ4.3"    "RJ4.4"   
## [727] "RJ4.5"    "RQ3b.a"   "RB13"     "Weight"
# 
# library(sjPlot)
# view_df(TY1,
#         file="tcs2018.html",  # 結果直接另存新檔
#         show.na = T, # 顯示未重新編碼前的無效值個數
#         show.frq = T, # 顯示次數
#         show.prc = T, # 顯示百分比
#         encoding = "big5"
# )
#install.packages("tidyr")
library(tidyr)
#install.packages("showtext")
library(showtext)
## Warning: package 'showtext' was built under R version 4.0.5
## Loading required package: sysfonts
## Warning: package 'sysfonts' was built under R version 4.0.5
## Loading required package: showtextdb
showtext_auto()
#install.packages("sjmisc")
library(sjmisc)
## 
## Attaching package: 'sjmisc'
## The following object is masked from 'package:tidyr':
## 
##     replace_na
#install.packages("ggplot2")
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.5
#install.packages("sjPlot")
library(sjPlot)
## Warning: package 'sjPlot' was built under R version 4.0.5
TY1$agegroup <- cut(TY1$A2, breaks=c(0,47,62, Inf),
                    labels=c("老年","中年","青年"))
names(TY1)
##   [1] "ID"       "A1"       "A2"       "A3"       "A3.a"     "A4a.1"   
##   [7] "A4b"      "A5"       "A5.a"     "A6"       "A6.a"     "A7"      
##  [13] "A7.a"     "A8"       "A8.a"     "B1"       "B2.1"     "B2.2"    
##  [19] "B3"       "B4.1"     "B4.2"     "B5"       "B6.1"     "B6.2"    
##  [25] "B7"       "B8.1"     "B8.2"     "B8.3"     "B8.4"     "B8.5"    
##  [31] "B8.6"     "B8.7"     "B8.8"     "B8.9"     "B8.10"    "B8.11"   
##  [37] "B8.12"    "B8.13"    "B8.14"    "B8.15"    "B8.16"    "B8.17"   
##  [43] "B8.18"    "B8.19"    "B8.20"    "B8.21"    "B8.22"    "B8.23"   
##  [49] "B8.24"    "B8.25"    "B8.26"    "B8.27"    "B8.28"    "B8.29"   
##  [55] "B8.30"    "B8.31"    "B8.32"    "B8.33"    "B8.34"    "B8.35"   
##  [61] "B8.36"    "B8.37"    "B8.38"    "B8.88"    "B7.a"     "B8.a"    
##  [67] "C1"       "C2.1"     "C2.2"     "C3.1"     "C3.2"     "C3.3"    
##  [73] "C3.4"     "C3.5"     "C3.6"     "C3.7"     "C3.8"     "C3.9"    
##  [79] "C3.10"    "C3.11"    "C3.12"    "C3.13"    "C3.14"    "C3.15"   
##  [85] "C3.16"    "C3.17"    "C3.18"    "C3.19"    "C3.20"    "C3.21"   
##  [91] "C3.22"    "C3.23"    "C3.24"    "C3.25"    "C3.26"    "C3.27"   
##  [97] "C3.28"    "C3.88"    "C3.a"     "D1"       "D2"       "D3"      
## [103] "D4"       "D5.1.a"   "D5.1.b"   "D5.2.a"   "D5.2.b"   "D5.3.a"  
## [109] "D5.3.b"   "D6.1"     "D6.2"     "D6.3"     "D6.4.a"   "D6.4.b"  
## [115] "D6.4.c"   "D6.5"     "D6.6"     "D7.1"     "D7.2"     "D7.3"    
## [121] "D7.4"     "D7.5"     "D7.6"     "D7.7"     "D7.8"     "D7.9"    
## [127] "D7.10"    "D7.11"    "D7.12"    "D7.13"    "D7.14"    "D7.15"   
## [133] "D7.16"    "D7.17"    "D7.18"    "D7.19"    "D7.20"    "D7.21"   
## [139] "D7.22"    "D7.23"    "D7.24"    "D7.25"    "D7.26"    "D7.27"   
## [145] "D7.28"    "D7.29"    "D7.30"    "D7.31"    "D7.32"    "D7.33"   
## [151] "D7.34"    "D7.35"    "D7.36"    "D7.37"    "D7.38"    "D7.39"   
## [157] "D7.40"    "D7.41"    "D7.42"    "D7.43"    "D7.44"    "D7.45"   
## [163] "D7.46"    "D7.47"    "D7.48"    "D7.49"    "D7.88"    "D7.a"    
## [169] "E1a"      "E1b.1"    "E1b.2"    "E2a"      "E2b.1"    "E2b.2"   
## [175] "E3.1"     "E3.2"     "E3.3"     "E3.4"     "E3.5"     "E3.6"    
## [181] "E3.7"     "E3.8"     "E3.9"     "E3.10"    "E3.11"    "E3.12"   
## [187] "E3.13"    "E3.14"    "E3.15"    "E3.16"    "E3.17"    "E3.18"   
## [193] "E3.19"    "E3.20"    "E3.21"    "E3.22"    "E3.23"    "E3.24"   
## [199] "E3.25"    "E3.26"    "E3.27"    "E3.28"    "E3.29"    "E3.30"   
## [205] "E3.31"    "E3.88"    "E3.a"     "F1a"      "F1b.1"    "F1b.2"   
## [211] "F1c.1"    "F1c.2"    "F1c.3"    "F1c.4"    "F1c.5"    "F1c.6"   
## [217] "F1c.7"    "F1c.8"    "F1c.9"    "F1c.10"   "F1c.11"   "F1c.12"  
## [223] "F1c.13"   "F1c.14"   "F1c.15"   "F1c.16"   "F1c.17"   "F1c.18"  
## [229] "F1c.19"   "F1c.20"   "F1c.21"   "F1c.22"   "F1c.23"   "F1c.24"  
## [235] "F1c.25"   "F1c.26"   "F1c.27"   "F1c.28"   "F1c.29"   "F1c.30"  
## [241] "F1c.31"   "F1c.32"   "F1c.33"   "F1c.34"   "F1c.35"   "F1c.88"  
## [247] "F1c.a"    "F2a"      "F2b.1"    "F2b.2"    "F2c.1"    "F2c.2"   
## [253] "F2c.3"    "F2c.4"    "F2c.5"    "F2c.6"    "F2c.7"    "F2c.8"   
## [259] "F2c.9"    "F2c.10"   "F2c.11"   "F2c.12"   "F2c.13"   "F2c.14"  
## [265] "F2c.15"   "F2c.16"   "F2c.17"   "F2c.18"   "F2c.19"   "F2c.20"  
## [271] "F2c.21"   "F2c.22"   "F2c.23"   "F2c.24"   "F2c.25"   "F2c.26"  
## [277] "F2c.27"   "F2c.28"   "F2c.29"   "F2c.30"   "F2c.31"   "F2c.32"  
## [283] "F2c.33"   "F2c.34"   "F2c.35"   "F2c.36"   "F2c.37"   "F2c.38"  
## [289] "F2c.39"   "F2c.40"   "F2c.41"   "F2c.42"   "F2c.43"   "F2c.88"  
## [295] "F2c.a"    "F3.1"     "F3.2"     "F3.3"     "F3.4"     "F3.5"    
## [301] "F3.6"     "F3.7"     "F3.8"     "F3.9"     "F3.10"    "F3.11"   
## [307] "F3.12"    "F3.13"    "F3.14"    "F3.15"    "F3.16"    "F3.17"   
## [313] "F3.18"    "F3.19"    "F3.20"    "F3.21"    "F3.22"    "F3.23"   
## [319] "F3.24"    "F3.25"    "F3.26"    "F3.88"    "F3.a"     "G1a"     
## [325] "G1b"      "G1c"      "G1d"      "G1e"      "G1f"      "G2.1.a.1"
## [331] "G2.1.a.2" "G2.1.b.1" "G2.1.b.2" "G2.1.c.1" "G2.1.c.2" "G2.2.a.1"
## [337] "G2.2.a.2" "G2.2.b.1" "G2.2.b.2" "G2.2.c.1" "G2.2.c.2" "H1"      
## [343] "H2.1"     "H2.2"     "H3.1"     "H3.2"     "H3.3"     "H3.4"    
## [349] "H3.5"     "H3.6"     "H3.7"     "H3.8"     "H3.9"     "H3.10"   
## [355] "H3.11"    "H3.12"    "H3.13"    "H3.14"    "H3.15"    "H3.16"   
## [361] "H3.17"    "H3.18"    "H3.19"    "H3.20"    "H3.21"    "H3.22"   
## [367] "H3.23"    "H3.24"    "H3.25"    "H3.26"    "H3.27"    "H3.28"   
## [373] "H3.29"    "H3.30"    "H3.31"    "H3.32"    "H3.33"    "H3.34"   
## [379] "H3.35"    "H3.36"    "H3.37"    "H3.38"    "H3.39"    "H3.40"   
## [385] "H3.41"    "H3.42"    "H3.43"    "H3.44"    "H3.45"    "H3.46"   
## [391] "H3.47"    "H3.48"    "H3.49"    "H3.50"    "H3.51"    "H3.52"   
## [397] "H3.53"    "H3.54"    "H3.55"    "H3.56"    "H3.57"    "H3.88"   
## [403] "H4.1"     "H4.2"     "H4.3"     "H3.a"     "I1.1.1"   "I1.1.2"  
## [409] "I1.1.3"   "I1.1.4"   "I1.1.5"   "I1.1.6"   "I1.1.7"   "I1.1.88" 
## [415] "I1.1.90"  "I1.2.1"   "I1.2.2"   "I1.2.3"   "I1.2.4"   "I1.2.5"  
## [421] "I1.2.6"   "I1.2.7"   "I1.2.88"  "I1.2.90"  "I2a"      "I2b.1"   
## [427] "I2b.2"    "I2c.1"    "I2c.2"    "I2c.3"    "I2c.4"    "I2c.5"   
## [433] "I2c.6"    "I2c.7"    "I2c.8"    "I2c.9"    "I2c.10"   "I2c.11"  
## [439] "I2c.12"   "I2c.13"   "I2c.14"   "I2c.15"   "I2c.16"   "I2c.88"  
## [445] "I2d.1"    "I2d.2"    "I2d.3"    "I2d.4"    "I2d.5"    "I2d.6"   
## [451] "I2d.7"    "I2d.8"    "I2d.9"    "I2d.10"   "I2d.11"   "I2d.12"  
## [457] "I2d.88"   "I2e"      "I2e.a"    "I2f.1"    "I2f.2"    "I2f.3"   
## [463] "I2f.4"    "I2f.5"    "I2f.6"    "I2f.7"    "I2f.8"    "I2f.9"   
## [469] "I2f.10"   "I3a"      "I3b.1"    "I3b.2"    "I3c"      "I3d.1"   
## [475] "I3d.2"    "I3d.3"    "I3d.4"    "I3d.5"    "I3d.6"    "I3d.7"   
## [481] "I3d.8"    "I3d.9"    "I3d.10"   "I3d.11"   "I3d.12"   "I3d.13"  
## [487] "I3d.14"   "I3d.15"   "I3d.16"   "I3d.17"   "I3d.88"   "I3e.1"   
## [493] "I3e.2"    "I3e.3"    "I3e.4"    "I3f"      "I1.2.a"   "I1.1.a"  
## [499] "I2c.a"    "I2d.a"    "I3c.a"    "I3d.a"    "J1"       "J1.a"    
## [505] "J2"       "J2.a"     "J3"       "J3.a"     "J4.1"     "J4.2"    
## [511] "J4.3"     "J4.4"     "J4.5"     "J5a.1"    "J5a.2"    "J5a.3"   
## [517] "J5a.4"    "J5a.5"    "J5a.6"    "J5a.7"    "J5a.8"    "J5a.9"   
## [523] "J5a.10"   "J5a.88"   "J5a.90"   "J5a.a"    "J5b.1"    "J5b.2"   
## [529] "J5b.3"    "J5b.4"    "J5b.5"    "J5b.6"    "J5b.88"   "J5b.90"  
## [535] "J5b.101"  "J5b.a"    "K1.1"     "K1.2"     "K1.3"     "K1.4"    
## [541] "K1.5"     "K1.6"     "K1.7"     "L1a"      "L1b"      "L1c"     
## [547] "L2.1"     "L2.2"     "L2.3"     "L2.4"     "L2.5"     "L2.6"    
## [553] "L3"       "L4"       "L5"       "L6"       "L7a"      "L7b"     
## [559] "L7c"      "L8"       "M1"       "M2"       "M3a"      "M3b"     
## [565] "M4"       "M5.1"     "M5.2"     "N1a"      "N1b"      "N1c"     
## [571] "N2.1"     "N2.2"     "N2.3"     "N2.4"     "N2.5"     "N2.6"    
## [577] "N2.7"     "N2.8"     "O1a"      "O1a.a"    "O1b"      "O2"      
## [583] "O3a"      "O3b.1"    "O3b.2"    "O3b.3"    "O3b.4"    "O3b.5"   
## [589] "O3b.6"    "O3b.7"    "O3b.8"    "O3b.9"    "O3b.10"   "O3b.90"  
## [595] "O3c.1"    "O3c.2"    "O3c.3"    "O3c.4"    "O3c.5"    "O3c.6"   
## [601] "O3c.7"    "O3c.8"    "O3c.9"    "O3c.10"   "O3c.90"   "O4a.1"   
## [607] "O4a.2"    "O4a.3"    "O4a.4"    "O4a.5"    "O4a.6"    "O4a.7"   
## [613] "O4a.8"    "O4a.9"    "O4a.10"   "O4a.90"   "O4b.1"    "O4b.2"   
## [619] "O4b.3"    "O4b.4"    "O4b.5"    "O4b.6"    "O4b.7"    "O4b.8"   
## [625] "O4b.9"    "O4b.10"   "O4b.90"   "O5"       "O6"       "O7a"     
## [631] "O8"       "O9"       "O9.a"     "O10"      "P1.1"     "P1.2"    
## [637] "P1.3"     "P1.4"     "P1.5"     "P1.6"     "P1.7"     "P1.8"    
## [643] "P1.9"     "P1.10"    "P2.1"     "P2.2"     "P2.3"     "P2.4"    
## [649] "P2.5"     "P2.6"     "P2.7"     "P2.8"     "P2.9"     "P2.10"   
## [655] "P3.1"     "P3.2"     "P3.3"     "P3.4"     "P3.5"     "P4"      
## [661] "P5"       "Q1"       "Q1.a"     "Q2"       "Q3a"      "Q3b"     
## [667] "Q2.a"     "Q3a.a"    "Q3b.a"    "Q4"       "RA2"      "RRA2"    
## [673] "Rcity"    "ORcity1"  "RA8"      "RB2"      "RRB2"     "RB4"     
## [679] "RRB4"     "RB6"      "RRB6"     "RC2"      "RRC2"     "RD5.1.a" 
## [685] "RD5.1.b"  "RD5.2.a"  "RD5.2.b"  "RD5.3.a"  "RD5.3.b"  "RD6.6"   
## [691] "RE1b"     "RRE1b"    "RE2b"     "RRE2b"    "RF1b"     "RRF1b"   
## [697] "RF2b"     "RRF2b"    "RG1a"     "RG1b"     "RG1c"     "RG1e"    
## [703] "RG2.1.a"  "RRG2.1.a" "RG2.1.b"  "RRG2.1.b" "RG2.1.c"  "RRG2.1.c"
## [709] "RG2.2.a"  "RRG2.2.a" "RG2.2.b"  "RRG2.2.b" "RG2.2.c"  "RRG2.2.c"
## [715] "RH2"      "RRH2"     "RI2b"     "RRI2b"    "RI2e"     "RI3b"    
## [721] "RRI3b"    "RI3c"     "RJ4.1"    "RJ4.2"    "RJ4.3"    "RJ4.4"   
## [727] "RJ4.5"    "RQ3b.a"   "RB13"     "Weight"   "agegroup"
#LINE
DF <- TY1[,c(731,428:443)]
DF[is.na(DF)] <- 0
DF1 <- gather(DF, key = "cope", value = "count", I2c.1,I2c.2,I2c.3,I2c.4,I2c.5,I2c.6,I2c.7,I2c.8,I2c.9,
              I2c.10,I2c.11,I2c.12,I2c.13,I2c.14,I2c.15,I2c.16)
## Warning: attributes are not identical across measure variables;
## they will be dropped
DF2 <- subset(DF1, count==1)

sjt.xtab(DF2$agegroup,DF2$cope,encoding = "big-5",show.cell.prc = T,
         show.row.prc = T,
         show.col.prc = T)
agegroup cope Total
I2c.1 I2c.10 I2c.11 I2c.12 I2c.13 I2c.14 I2c.15 I2c.16 I2c.2 I2c.3 I2c.4 I2c.5 I2c.6 I2c.7 I2c.8 I2c.9
老年 222
19.2 %
15.5 %
3 %
69
6 %
15.9 %
0.9 %
64
5.5 %
15.8 %
0.9 %
41
3.6 %
20.4 %
0.5 %
1
0.1 %
4.2 %
0 %
90
7.8 %
16.2 %
1.2 %
50
4.3 %
14.4 %
0.7 %
61
5.3 %
15.5 %
0.8 %
216
18.7 %
17.9 %
2.9 %
28
2.4 %
14.9 %
0.4 %
132
11.4 %
16.5 %
1.8 %
32
2.8 %
16.2 %
0.4 %
14
1.2 %
22.6 %
0.2 %
66
5.7 %
19.2 %
0.9 %
27
2.3 %
9.9 %
0.4 %
41
3.6 %
6.3 %
0.5 %
1154
100 %
15.3 %
15.5 %
中年 489
20 %
34.1 %
6.5 %
129
5.3 %
29.8 %
1.7 %
159
6.5 %
39.2 %
2.1 %
77
3.1 %
38.3 %
1 %
9
0.4 %
37.5 %
0.1 %
183
7.5 %
32.9 %
2.4 %
112
4.6 %
32.3 %
1.5 %
124
5.1 %
31.6 %
1.6 %
398
16.3 %
33 %
5.3 %
42
1.7 %
22.3 %
0.6 %
262
10.7 %
32.7 %
3.5 %
66
2.7 %
33.5 %
0.9 %
16
0.7 %
25.8 %
0.2 %
111
4.5 %
32.3 %
1.5 %
63
2.6 %
23.2 %
0.8 %
208
8.5 %
31.8 %
2.8 %
2448
100 %
32.6 %
32.5 %
青年 723
18.5 %
50.4 %
9.6 %
235
6 %
54.3 %
3.1 %
183
4.7 %
45.1 %
2.4 %
83
2.1 %
41.3 %
1.1 %
14
0.4 %
58.3 %
0.2 %
283
7.2 %
50.9 %
3.8 %
185
4.7 %
53.3 %
2.5 %
208
5.3 %
52.9 %
2.8 %
591
15.1 %
49 %
7.9 %
118
3 %
62.8 %
1.6 %
408
10.4 %
50.9 %
5.4 %
99
2.5 %
50.3 %
1.3 %
32
0.8 %
51.6 %
0.4 %
167
4.3 %
48.5 %
2.2 %
182
4.6 %
66.9 %
2.4 %
406
10.4 %
62 %
5.4 %
3917
100 %
52.1 %
52.1 %
Total 1434
19.1 %
100 %
19.1 %
433
5.8 %
100 %
5.8 %
406
5.4 %
100 %
5.4 %
201
2.7 %
100 %
2.7 %
24
0.3 %
100 %
0.3 %
556
7.4 %
100 %
7.4 %
347
4.6 %
100 %
4.6 %
393
5.2 %
100 %
5.2 %
1205
16 %
100 %
16 %
188
2.5 %
100 %
2.5 %
802
10.7 %
100 %
10.7 %
197
2.6 %
100 %
2.6 %
62
0.8 %
100 %
0.8 %
344
4.6 %
100 %
4.6 %
272
3.6 %
100 %
3.6 %
655
8.7 %
100 %
8.7 %
7519
100 %
100 %
100 %
χ2=123.416 · df=30 · Cramer’s V=0.091 · Fisher’s p=0.000
class(DF2$agegroup)
## [1] "factor"
class(DF2$cope)
## [1] "character"
DF2$cope <- as.factor(DF2$cope)


# #使用Line的動機(未採用)
# ggplot(DF2, 
#        aes(cope, fill=agegroup))+
#   geom_bar(position = "dodge")+
#   labs(title = "使用Line的動機",
#        x="使用原因和動機",y="人數",
#        caption="藝馨製 資料來源:台灣傳播調查資料庫")+
#   theme(panel.background = element_blank())+
#   theme(plot.title = element_text(hjust = 0.5))+
#   theme(axis.title.y = element_text(vjust = 0.5, hjust = 0.5, angle = 0))+
#   geom_text(stat="count",aes(label=..count..),size=3,
#             position = position_dodge(width = 1))+
#   scale_x_discrete("使用Line的主要原因和動機",labels = c("I2c.1" = "聯絡事情","I2c.2" = "維持與親友之間的關係",
#                                                "I2c.3" = "交新朋友", "I2c.4" = "與朋友分享心情",
#                                                "I2c.5" = "分享時事或發表個人評論","I2c.6" = "展現你個人特色",
#                                                "I2c.7" = "怕漏掉親友間發生的事情或話題", "I2c.8" = "怕漏掉同儕間發生的事情或話題",
#                                                "I2c.9"="工作或課業所需","I2c.10"="安排活動或行程",
#                                                "I2c.11"="獲得新聞訊息","I2c.12"="學習新事物",
#                                                "I2c.13"="逃避學校或工作的事情","I2c.14"="打發時間","I2c.15"="娛樂","I12C.16"="習慣"))+
#   scale_fill_manual("各年齡層",values=c("lightskyblue1", "rosybrown2", "steelblue1","tomato1"))+
#   theme(axis.text.x = element_text(vjust = 0.9,hjust = 1, angle=30))
# 

#使用Line的動機(表六)
ggplot(DF2,aes(x=cope, fill=agegroup))+geom_bar()+ 
  facet_grid(.~agegroup)+
  labs(title = "使用LINE的動機",
       x="使用動機",y="人數",
       caption="藝馨製 資料來源:台灣傳播調查資料庫")+
  theme(panel.background = element_blank())+
  theme(plot.title = element_text(hjust = 0.5))+
  theme(axis.title.y = element_text(vjust = 0.5, hjust = 0.5, angle = 0))+
  geom_text(stat="count",aes(label=..count..),size=3,
            position = position_dodge(width = 1))+
  scale_x_discrete("使用原因和動機",labels = c("I2c.1" = "聯絡事情","I2c.2" = "維持與親友之間的關係",
                                        "I2c.3" = "交新朋友", "I2c.4" = "與朋友分享心情",
                                        "I2c.5" = "分享時事或發表個人評論","I2c.6" = "展現你個人特色",
                                        "I2c.7" = "怕漏掉親友間發生的事情或話題", "I2c.8" = "怕漏掉同儕間發生的事情或話題",
                                        "I2c.9"="工作或課業所需","I2c.10"="安排活動或行程",
                                        "I2c.11"="獲得新聞訊息","I2c.12"="學習新事物",
                                        "I2c.13"="逃避學校或工作的事情","I2c.14"="打發時間","I2c.15"="娛樂","I2c.16"="習慣"))+
  theme(axis.text.x = element_text(vjust = 0.9,hjust = 1, angle=30))

#FACEBOOK
names(TY1)
##   [1] "ID"       "A1"       "A2"       "A3"       "A3.a"     "A4a.1"   
##   [7] "A4b"      "A5"       "A5.a"     "A6"       "A6.a"     "A7"      
##  [13] "A7.a"     "A8"       "A8.a"     "B1"       "B2.1"     "B2.2"    
##  [19] "B3"       "B4.1"     "B4.2"     "B5"       "B6.1"     "B6.2"    
##  [25] "B7"       "B8.1"     "B8.2"     "B8.3"     "B8.4"     "B8.5"    
##  [31] "B8.6"     "B8.7"     "B8.8"     "B8.9"     "B8.10"    "B8.11"   
##  [37] "B8.12"    "B8.13"    "B8.14"    "B8.15"    "B8.16"    "B8.17"   
##  [43] "B8.18"    "B8.19"    "B8.20"    "B8.21"    "B8.22"    "B8.23"   
##  [49] "B8.24"    "B8.25"    "B8.26"    "B8.27"    "B8.28"    "B8.29"   
##  [55] "B8.30"    "B8.31"    "B8.32"    "B8.33"    "B8.34"    "B8.35"   
##  [61] "B8.36"    "B8.37"    "B8.38"    "B8.88"    "B7.a"     "B8.a"    
##  [67] "C1"       "C2.1"     "C2.2"     "C3.1"     "C3.2"     "C3.3"    
##  [73] "C3.4"     "C3.5"     "C3.6"     "C3.7"     "C3.8"     "C3.9"    
##  [79] "C3.10"    "C3.11"    "C3.12"    "C3.13"    "C3.14"    "C3.15"   
##  [85] "C3.16"    "C3.17"    "C3.18"    "C3.19"    "C3.20"    "C3.21"   
##  [91] "C3.22"    "C3.23"    "C3.24"    "C3.25"    "C3.26"    "C3.27"   
##  [97] "C3.28"    "C3.88"    "C3.a"     "D1"       "D2"       "D3"      
## [103] "D4"       "D5.1.a"   "D5.1.b"   "D5.2.a"   "D5.2.b"   "D5.3.a"  
## [109] "D5.3.b"   "D6.1"     "D6.2"     "D6.3"     "D6.4.a"   "D6.4.b"  
## [115] "D6.4.c"   "D6.5"     "D6.6"     "D7.1"     "D7.2"     "D7.3"    
## [121] "D7.4"     "D7.5"     "D7.6"     "D7.7"     "D7.8"     "D7.9"    
## [127] "D7.10"    "D7.11"    "D7.12"    "D7.13"    "D7.14"    "D7.15"   
## [133] "D7.16"    "D7.17"    "D7.18"    "D7.19"    "D7.20"    "D7.21"   
## [139] "D7.22"    "D7.23"    "D7.24"    "D7.25"    "D7.26"    "D7.27"   
## [145] "D7.28"    "D7.29"    "D7.30"    "D7.31"    "D7.32"    "D7.33"   
## [151] "D7.34"    "D7.35"    "D7.36"    "D7.37"    "D7.38"    "D7.39"   
## [157] "D7.40"    "D7.41"    "D7.42"    "D7.43"    "D7.44"    "D7.45"   
## [163] "D7.46"    "D7.47"    "D7.48"    "D7.49"    "D7.88"    "D7.a"    
## [169] "E1a"      "E1b.1"    "E1b.2"    "E2a"      "E2b.1"    "E2b.2"   
## [175] "E3.1"     "E3.2"     "E3.3"     "E3.4"     "E3.5"     "E3.6"    
## [181] "E3.7"     "E3.8"     "E3.9"     "E3.10"    "E3.11"    "E3.12"   
## [187] "E3.13"    "E3.14"    "E3.15"    "E3.16"    "E3.17"    "E3.18"   
## [193] "E3.19"    "E3.20"    "E3.21"    "E3.22"    "E3.23"    "E3.24"   
## [199] "E3.25"    "E3.26"    "E3.27"    "E3.28"    "E3.29"    "E3.30"   
## [205] "E3.31"    "E3.88"    "E3.a"     "F1a"      "F1b.1"    "F1b.2"   
## [211] "F1c.1"    "F1c.2"    "F1c.3"    "F1c.4"    "F1c.5"    "F1c.6"   
## [217] "F1c.7"    "F1c.8"    "F1c.9"    "F1c.10"   "F1c.11"   "F1c.12"  
## [223] "F1c.13"   "F1c.14"   "F1c.15"   "F1c.16"   "F1c.17"   "F1c.18"  
## [229] "F1c.19"   "F1c.20"   "F1c.21"   "F1c.22"   "F1c.23"   "F1c.24"  
## [235] "F1c.25"   "F1c.26"   "F1c.27"   "F1c.28"   "F1c.29"   "F1c.30"  
## [241] "F1c.31"   "F1c.32"   "F1c.33"   "F1c.34"   "F1c.35"   "F1c.88"  
## [247] "F1c.a"    "F2a"      "F2b.1"    "F2b.2"    "F2c.1"    "F2c.2"   
## [253] "F2c.3"    "F2c.4"    "F2c.5"    "F2c.6"    "F2c.7"    "F2c.8"   
## [259] "F2c.9"    "F2c.10"   "F2c.11"   "F2c.12"   "F2c.13"   "F2c.14"  
## [265] "F2c.15"   "F2c.16"   "F2c.17"   "F2c.18"   "F2c.19"   "F2c.20"  
## [271] "F2c.21"   "F2c.22"   "F2c.23"   "F2c.24"   "F2c.25"   "F2c.26"  
## [277] "F2c.27"   "F2c.28"   "F2c.29"   "F2c.30"   "F2c.31"   "F2c.32"  
## [283] "F2c.33"   "F2c.34"   "F2c.35"   "F2c.36"   "F2c.37"   "F2c.38"  
## [289] "F2c.39"   "F2c.40"   "F2c.41"   "F2c.42"   "F2c.43"   "F2c.88"  
## [295] "F2c.a"    "F3.1"     "F3.2"     "F3.3"     "F3.4"     "F3.5"    
## [301] "F3.6"     "F3.7"     "F3.8"     "F3.9"     "F3.10"    "F3.11"   
## [307] "F3.12"    "F3.13"    "F3.14"    "F3.15"    "F3.16"    "F3.17"   
## [313] "F3.18"    "F3.19"    "F3.20"    "F3.21"    "F3.22"    "F3.23"   
## [319] "F3.24"    "F3.25"    "F3.26"    "F3.88"    "F3.a"     "G1a"     
## [325] "G1b"      "G1c"      "G1d"      "G1e"      "G1f"      "G2.1.a.1"
## [331] "G2.1.a.2" "G2.1.b.1" "G2.1.b.2" "G2.1.c.1" "G2.1.c.2" "G2.2.a.1"
## [337] "G2.2.a.2" "G2.2.b.1" "G2.2.b.2" "G2.2.c.1" "G2.2.c.2" "H1"      
## [343] "H2.1"     "H2.2"     "H3.1"     "H3.2"     "H3.3"     "H3.4"    
## [349] "H3.5"     "H3.6"     "H3.7"     "H3.8"     "H3.9"     "H3.10"   
## [355] "H3.11"    "H3.12"    "H3.13"    "H3.14"    "H3.15"    "H3.16"   
## [361] "H3.17"    "H3.18"    "H3.19"    "H3.20"    "H3.21"    "H3.22"   
## [367] "H3.23"    "H3.24"    "H3.25"    "H3.26"    "H3.27"    "H3.28"   
## [373] "H3.29"    "H3.30"    "H3.31"    "H3.32"    "H3.33"    "H3.34"   
## [379] "H3.35"    "H3.36"    "H3.37"    "H3.38"    "H3.39"    "H3.40"   
## [385] "H3.41"    "H3.42"    "H3.43"    "H3.44"    "H3.45"    "H3.46"   
## [391] "H3.47"    "H3.48"    "H3.49"    "H3.50"    "H3.51"    "H3.52"   
## [397] "H3.53"    "H3.54"    "H3.55"    "H3.56"    "H3.57"    "H3.88"   
## [403] "H4.1"     "H4.2"     "H4.3"     "H3.a"     "I1.1.1"   "I1.1.2"  
## [409] "I1.1.3"   "I1.1.4"   "I1.1.5"   "I1.1.6"   "I1.1.7"   "I1.1.88" 
## [415] "I1.1.90"  "I1.2.1"   "I1.2.2"   "I1.2.3"   "I1.2.4"   "I1.2.5"  
## [421] "I1.2.6"   "I1.2.7"   "I1.2.88"  "I1.2.90"  "I2a"      "I2b.1"   
## [427] "I2b.2"    "I2c.1"    "I2c.2"    "I2c.3"    "I2c.4"    "I2c.5"   
## [433] "I2c.6"    "I2c.7"    "I2c.8"    "I2c.9"    "I2c.10"   "I2c.11"  
## [439] "I2c.12"   "I2c.13"   "I2c.14"   "I2c.15"   "I2c.16"   "I2c.88"  
## [445] "I2d.1"    "I2d.2"    "I2d.3"    "I2d.4"    "I2d.5"    "I2d.6"   
## [451] "I2d.7"    "I2d.8"    "I2d.9"    "I2d.10"   "I2d.11"   "I2d.12"  
## [457] "I2d.88"   "I2e"      "I2e.a"    "I2f.1"    "I2f.2"    "I2f.3"   
## [463] "I2f.4"    "I2f.5"    "I2f.6"    "I2f.7"    "I2f.8"    "I2f.9"   
## [469] "I2f.10"   "I3a"      "I3b.1"    "I3b.2"    "I3c"      "I3d.1"   
## [475] "I3d.2"    "I3d.3"    "I3d.4"    "I3d.5"    "I3d.6"    "I3d.7"   
## [481] "I3d.8"    "I3d.9"    "I3d.10"   "I3d.11"   "I3d.12"   "I3d.13"  
## [487] "I3d.14"   "I3d.15"   "I3d.16"   "I3d.17"   "I3d.88"   "I3e.1"   
## [493] "I3e.2"    "I3e.3"    "I3e.4"    "I3f"      "I1.2.a"   "I1.1.a"  
## [499] "I2c.a"    "I2d.a"    "I3c.a"    "I3d.a"    "J1"       "J1.a"    
## [505] "J2"       "J2.a"     "J3"       "J3.a"     "J4.1"     "J4.2"    
## [511] "J4.3"     "J4.4"     "J4.5"     "J5a.1"    "J5a.2"    "J5a.3"   
## [517] "J5a.4"    "J5a.5"    "J5a.6"    "J5a.7"    "J5a.8"    "J5a.9"   
## [523] "J5a.10"   "J5a.88"   "J5a.90"   "J5a.a"    "J5b.1"    "J5b.2"   
## [529] "J5b.3"    "J5b.4"    "J5b.5"    "J5b.6"    "J5b.88"   "J5b.90"  
## [535] "J5b.101"  "J5b.a"    "K1.1"     "K1.2"     "K1.3"     "K1.4"    
## [541] "K1.5"     "K1.6"     "K1.7"     "L1a"      "L1b"      "L1c"     
## [547] "L2.1"     "L2.2"     "L2.3"     "L2.4"     "L2.5"     "L2.6"    
## [553] "L3"       "L4"       "L5"       "L6"       "L7a"      "L7b"     
## [559] "L7c"      "L8"       "M1"       "M2"       "M3a"      "M3b"     
## [565] "M4"       "M5.1"     "M5.2"     "N1a"      "N1b"      "N1c"     
## [571] "N2.1"     "N2.2"     "N2.3"     "N2.4"     "N2.5"     "N2.6"    
## [577] "N2.7"     "N2.8"     "O1a"      "O1a.a"    "O1b"      "O2"      
## [583] "O3a"      "O3b.1"    "O3b.2"    "O3b.3"    "O3b.4"    "O3b.5"   
## [589] "O3b.6"    "O3b.7"    "O3b.8"    "O3b.9"    "O3b.10"   "O3b.90"  
## [595] "O3c.1"    "O3c.2"    "O3c.3"    "O3c.4"    "O3c.5"    "O3c.6"   
## [601] "O3c.7"    "O3c.8"    "O3c.9"    "O3c.10"   "O3c.90"   "O4a.1"   
## [607] "O4a.2"    "O4a.3"    "O4a.4"    "O4a.5"    "O4a.6"    "O4a.7"   
## [613] "O4a.8"    "O4a.9"    "O4a.10"   "O4a.90"   "O4b.1"    "O4b.2"   
## [619] "O4b.3"    "O4b.4"    "O4b.5"    "O4b.6"    "O4b.7"    "O4b.8"   
## [625] "O4b.9"    "O4b.10"   "O4b.90"   "O5"       "O6"       "O7a"     
## [631] "O8"       "O9"       "O9.a"     "O10"      "P1.1"     "P1.2"    
## [637] "P1.3"     "P1.4"     "P1.5"     "P1.6"     "P1.7"     "P1.8"    
## [643] "P1.9"     "P1.10"    "P2.1"     "P2.2"     "P2.3"     "P2.4"    
## [649] "P2.5"     "P2.6"     "P2.7"     "P2.8"     "P2.9"     "P2.10"   
## [655] "P3.1"     "P3.2"     "P3.3"     "P3.4"     "P3.5"     "P4"      
## [661] "P5"       "Q1"       "Q1.a"     "Q2"       "Q3a"      "Q3b"     
## [667] "Q2.a"     "Q3a.a"    "Q3b.a"    "Q4"       "RA2"      "RRA2"    
## [673] "Rcity"    "ORcity1"  "RA8"      "RB2"      "RRB2"     "RB4"     
## [679] "RRB4"     "RB6"      "RRB6"     "RC2"      "RRC2"     "RD5.1.a" 
## [685] "RD5.1.b"  "RD5.2.a"  "RD5.2.b"  "RD5.3.a"  "RD5.3.b"  "RD6.6"   
## [691] "RE1b"     "RRE1b"    "RE2b"     "RRE2b"    "RF1b"     "RRF1b"   
## [697] "RF2b"     "RRF2b"    "RG1a"     "RG1b"     "RG1c"     "RG1e"    
## [703] "RG2.1.a"  "RRG2.1.a" "RG2.1.b"  "RRG2.1.b" "RG2.1.c"  "RRG2.1.c"
## [709] "RG2.2.a"  "RRG2.2.a" "RG2.2.b"  "RRG2.2.b" "RG2.2.c"  "RRG2.2.c"
## [715] "RH2"      "RRH2"     "RI2b"     "RRI2b"    "RI2e"     "RI3b"    
## [721] "RRI3b"    "RI3c"     "RJ4.1"    "RJ4.2"    "RJ4.3"    "RJ4.4"   
## [727] "RJ4.5"    "RQ3b.a"   "RB13"     "Weight"   "agegroup"
DF3 <- TY1[,c(731,474:479,481:489)]
DF3[is.na(DF3)] <- 0
DF4 <- gather(DF3, key = "cope", value = "count", I3d.1,I3d.2,I3d.3,I3d.4,I3d.5,I3d.6,I3d.8,I3d.9,
              I3d.10,I3d.11,I3d.12,I3d.13,I3d.14,I3d.15,I3d.16)
## Warning: attributes are not identical across measure variables;
## they will be dropped
DF5 <- subset(DF4, count==1)
#install.packages("sjPlot")
library(sjPlot)
sjt.xtab(DF5$agegroup,DF5$cope,encoding = "big-5",show.cell.prc = T,
         show.row.prc = T,
         show.col.prc = T)
agegroup cope Total
I3d.1 I3d.10 I3d.11 I3d.12 I3d.13 I3d.14 I3d.15 I3d.16 I3d.2 I3d.3 I3d.4 I3d.5 I3d.6 I3d.8 I3d.9
老年 55
11.4 %
10.1 %
1 %
11
2.3 %
6.1 %
0.2 %
17
3.5 %
11 %
0.3 %
40
8.3 %
9.2 %
0.7 %
21
4.3 %
7.5 %
0.4 %
0
0 %
0 %
0 %
55
11.4 %
9.1 %
1 %
31
6.4 %
7.3 %
0.6 %
94
19.4 %
11.3 %
1.7 %
15
3.1 %
5.2 %
0.3 %
67
13.8 %
9.5 %
1.2 %
28
5.8 %
7.1 %
0.5 %
10
2.1 %
6.5 %
0.2 %
32
6.6 %
11.7 %
0.6 %
8
1.7 %
4 %
0.1 %
484
100 %
8.8 %
8.8 %
中年 160
10.3 %
29.3 %
2.9 %
50
3.2 %
27.8 %
0.9 %
36
2.3 %
23.2 %
0.7 %
127
8.2 %
29.1 %
2.3 %
89
5.7 %
31.9 %
1.6 %
1
0.1 %
5 %
0 %
181
11.6 %
30.1 %
3.3 %
111
7.1 %
26.1 %
2 %
260
16.7 %
31.2 %
4.7 %
69
4.4 %
23.8 %
1.3 %
225
14.4 %
31.9 %
4.1 %
95
6.1 %
24.1 %
1.7 %
33
2.1 %
21.6 %
0.6 %
75
4.8 %
27.5 %
1.4 %
46
3 %
23.2 %
0.8 %
1558
100 %
28.4 %
28.3 %
青年 332
9.6 %
60.7 %
6 %
119
3.4 %
66.1 %
2.2 %
102
3 %
65.8 %
1.9 %
270
7.8 %
61.8 %
4.9 %
169
4.9 %
60.6 %
3.1 %
19
0.6 %
95 %
0.3 %
366
10.6 %
60.8 %
6.7 %
284
8.2 %
66.7 %
5.2 %
480
13.9 %
57.6 %
8.7 %
206
6 %
71 %
3.7 %
414
12 %
58.6 %
7.5 %
271
7.9 %
68.8 %
4.9 %
110
3.2 %
71.9 %
2 %
166
4.8 %
60.8 %
3 %
144
4.2 %
72.7 %
2.6 %
3452
100 %
62.8 %
62.7 %
Total 547
10 %
100 %
10 %
180
3.3 %
100 %
3.3 %
155
2.8 %
100 %
2.8 %
437
8 %
100 %
8 %
279
5.1 %
100 %
5.1 %
20
0.4 %
100 %
0.4 %
602
11 %
100 %
11 %
426
7.8 %
100 %
7.8 %
834
15.2 %
100 %
15.2 %
290
5.3 %
100 %
5.3 %
706
12.9 %
100 %
12.9 %
394
7.2 %
100 %
7.2 %
153
2.8 %
100 %
2.8 %
273
5 %
100 %
5 %
198
3.6 %
100 %
3.6 %
5494
100 %
100 %
100 %
χ2=72.018 · df=28 · Cramer’s V=0.081 · Fisher’s p=0.000
class(DF5$agegroup)
## [1] "factor"
class(DF5$cope)
## [1] "character"
DF5$cope <- as.factor(DF5$cope)

library(plyr)
## Warning: package 'plyr' was built under R version 4.0.5
ess3 = ddply(DF5,.(cope),function(.){
  res = prop.table(table(factor(.$agegroup)))
  res3 = table(factor(.$agegroup))
  data.frame(lab=names(res), y=c(res),yy =c(res3))
})


# #使用Facebook的動機(未採用)
# ggplot(DF5,
#        aes(cope, fill=agegroup))+
#   geom_bar(position = "dodge")+
#   labs(title = "使用Facebook的動機",
#        x="各年齡層",y="人數",
#        caption="藝馨製 資料來源:台灣傳播調查資料庫")+
#   theme(panel.background = element_blank())+
#   theme(plot.title = element_text(hjust = 0.5))+
#   theme(axis.title.y = element_text(vjust = 0.5, hjust = 0.5, angle = 0))+
#   geom_text(stat="count",aes(label=..count..),size=3,
#             position = position_dodge(width = 1))+
#   scale_x_discrete("使用動機",labels = c("I3d.1" = "聯絡事情","I3d.2" = "維持與親友之間的關係",
#                                      "I3d.3" = "交新朋友", "I3d.4" = "與朋友分享心情",
#                                      "I3d.5" = "分享時事或發表個人評論","I3d.6" = "展現你個人特色",
#                                      "I3d.8" = "怕漏掉親友間發生的事情或話題", "I3d.9" = "怕漏掉同儕間發生的事情或話題",
#                                      "I3d.10"="工作或課業所需","I3d.11"="安排活動或行程",
#                                      "I3d.12"="獲得新聞訊息","I3d.13"="學習新事物",
#                                      "I3d.14"="逃避學校或工作的事情","I3d.15"="打發時間","I3d.16"="娛樂","I3d.17"="習慣"))+
#   scale_fill_manual("年齡層",values=c("lightskyblue1", "rosybrown2", "steelblue1","tomato1"))+
#   theme(axis.text.x = element_text(vjust = 0.9,hjust = 1, angle=30))


#使用Facebook的動機(表五)
ggplot(DF5,aes(x=cope, fill=agegroup))+geom_bar()+ #+geom_bar()預設為+geom_bar(position="stack")
  facet_grid(.~agegroup)+
  labs(title = "使用Facebook的動機",
       x="使用動機",y="人數",
       caption="藝馨製 資料來源:台灣傳播調查資料庫")+
  theme(panel.background = element_blank())+
  theme(plot.title = element_text(hjust = 0.5))+
  theme(axis.title.y = element_text(vjust = 0.5, hjust = 0.5, angle = 0))+
  geom_text(stat="count",aes(label=..count..),size=3,
            position = position_dodge(width = 1))+
  scale_x_discrete("使用動機",labels = c("I3d.1" = "聯絡事情","I3d.2" = "維持與親友之間的關係",
                                     "I3d.3" = "交新朋友", "I3d.4" = "與朋友分享心情",
                                     "I3d.5" = "分享時事或發表個人評論","I3d.6" = "展現你個人特色",
                                     "I3d.8" = "怕漏掉親友間發生的事情或話題", "I3d.9" = "怕漏掉同儕間發生的事情或話題",
                                     "I3d.10"="工作或課業所需","I3d.11"="安排活動或行程",
                                     "I3d.12"="獲得新聞訊息","I3d.13"="學習新事物",
                                     "I3d.14"="逃避學校或工作的事情","I3d.15"="打發時間","I3d.16"="娛樂"))+
  theme(axis.text.x = element_text(vjust = 0.9,hjust = 1, angle=30))

#偏好使用之即時通訊軟體(表二)
names(TY1)
##   [1] "ID"       "A1"       "A2"       "A3"       "A3.a"     "A4a.1"   
##   [7] "A4b"      "A5"       "A5.a"     "A6"       "A6.a"     "A7"      
##  [13] "A7.a"     "A8"       "A8.a"     "B1"       "B2.1"     "B2.2"    
##  [19] "B3"       "B4.1"     "B4.2"     "B5"       "B6.1"     "B6.2"    
##  [25] "B7"       "B8.1"     "B8.2"     "B8.3"     "B8.4"     "B8.5"    
##  [31] "B8.6"     "B8.7"     "B8.8"     "B8.9"     "B8.10"    "B8.11"   
##  [37] "B8.12"    "B8.13"    "B8.14"    "B8.15"    "B8.16"    "B8.17"   
##  [43] "B8.18"    "B8.19"    "B8.20"    "B8.21"    "B8.22"    "B8.23"   
##  [49] "B8.24"    "B8.25"    "B8.26"    "B8.27"    "B8.28"    "B8.29"   
##  [55] "B8.30"    "B8.31"    "B8.32"    "B8.33"    "B8.34"    "B8.35"   
##  [61] "B8.36"    "B8.37"    "B8.38"    "B8.88"    "B7.a"     "B8.a"    
##  [67] "C1"       "C2.1"     "C2.2"     "C3.1"     "C3.2"     "C3.3"    
##  [73] "C3.4"     "C3.5"     "C3.6"     "C3.7"     "C3.8"     "C3.9"    
##  [79] "C3.10"    "C3.11"    "C3.12"    "C3.13"    "C3.14"    "C3.15"   
##  [85] "C3.16"    "C3.17"    "C3.18"    "C3.19"    "C3.20"    "C3.21"   
##  [91] "C3.22"    "C3.23"    "C3.24"    "C3.25"    "C3.26"    "C3.27"   
##  [97] "C3.28"    "C3.88"    "C3.a"     "D1"       "D2"       "D3"      
## [103] "D4"       "D5.1.a"   "D5.1.b"   "D5.2.a"   "D5.2.b"   "D5.3.a"  
## [109] "D5.3.b"   "D6.1"     "D6.2"     "D6.3"     "D6.4.a"   "D6.4.b"  
## [115] "D6.4.c"   "D6.5"     "D6.6"     "D7.1"     "D7.2"     "D7.3"    
## [121] "D7.4"     "D7.5"     "D7.6"     "D7.7"     "D7.8"     "D7.9"    
## [127] "D7.10"    "D7.11"    "D7.12"    "D7.13"    "D7.14"    "D7.15"   
## [133] "D7.16"    "D7.17"    "D7.18"    "D7.19"    "D7.20"    "D7.21"   
## [139] "D7.22"    "D7.23"    "D7.24"    "D7.25"    "D7.26"    "D7.27"   
## [145] "D7.28"    "D7.29"    "D7.30"    "D7.31"    "D7.32"    "D7.33"   
## [151] "D7.34"    "D7.35"    "D7.36"    "D7.37"    "D7.38"    "D7.39"   
## [157] "D7.40"    "D7.41"    "D7.42"    "D7.43"    "D7.44"    "D7.45"   
## [163] "D7.46"    "D7.47"    "D7.48"    "D7.49"    "D7.88"    "D7.a"    
## [169] "E1a"      "E1b.1"    "E1b.2"    "E2a"      "E2b.1"    "E2b.2"   
## [175] "E3.1"     "E3.2"     "E3.3"     "E3.4"     "E3.5"     "E3.6"    
## [181] "E3.7"     "E3.8"     "E3.9"     "E3.10"    "E3.11"    "E3.12"   
## [187] "E3.13"    "E3.14"    "E3.15"    "E3.16"    "E3.17"    "E3.18"   
## [193] "E3.19"    "E3.20"    "E3.21"    "E3.22"    "E3.23"    "E3.24"   
## [199] "E3.25"    "E3.26"    "E3.27"    "E3.28"    "E3.29"    "E3.30"   
## [205] "E3.31"    "E3.88"    "E3.a"     "F1a"      "F1b.1"    "F1b.2"   
## [211] "F1c.1"    "F1c.2"    "F1c.3"    "F1c.4"    "F1c.5"    "F1c.6"   
## [217] "F1c.7"    "F1c.8"    "F1c.9"    "F1c.10"   "F1c.11"   "F1c.12"  
## [223] "F1c.13"   "F1c.14"   "F1c.15"   "F1c.16"   "F1c.17"   "F1c.18"  
## [229] "F1c.19"   "F1c.20"   "F1c.21"   "F1c.22"   "F1c.23"   "F1c.24"  
## [235] "F1c.25"   "F1c.26"   "F1c.27"   "F1c.28"   "F1c.29"   "F1c.30"  
## [241] "F1c.31"   "F1c.32"   "F1c.33"   "F1c.34"   "F1c.35"   "F1c.88"  
## [247] "F1c.a"    "F2a"      "F2b.1"    "F2b.2"    "F2c.1"    "F2c.2"   
## [253] "F2c.3"    "F2c.4"    "F2c.5"    "F2c.6"    "F2c.7"    "F2c.8"   
## [259] "F2c.9"    "F2c.10"   "F2c.11"   "F2c.12"   "F2c.13"   "F2c.14"  
## [265] "F2c.15"   "F2c.16"   "F2c.17"   "F2c.18"   "F2c.19"   "F2c.20"  
## [271] "F2c.21"   "F2c.22"   "F2c.23"   "F2c.24"   "F2c.25"   "F2c.26"  
## [277] "F2c.27"   "F2c.28"   "F2c.29"   "F2c.30"   "F2c.31"   "F2c.32"  
## [283] "F2c.33"   "F2c.34"   "F2c.35"   "F2c.36"   "F2c.37"   "F2c.38"  
## [289] "F2c.39"   "F2c.40"   "F2c.41"   "F2c.42"   "F2c.43"   "F2c.88"  
## [295] "F2c.a"    "F3.1"     "F3.2"     "F3.3"     "F3.4"     "F3.5"    
## [301] "F3.6"     "F3.7"     "F3.8"     "F3.9"     "F3.10"    "F3.11"   
## [307] "F3.12"    "F3.13"    "F3.14"    "F3.15"    "F3.16"    "F3.17"   
## [313] "F3.18"    "F3.19"    "F3.20"    "F3.21"    "F3.22"    "F3.23"   
## [319] "F3.24"    "F3.25"    "F3.26"    "F3.88"    "F3.a"     "G1a"     
## [325] "G1b"      "G1c"      "G1d"      "G1e"      "G1f"      "G2.1.a.1"
## [331] "G2.1.a.2" "G2.1.b.1" "G2.1.b.2" "G2.1.c.1" "G2.1.c.2" "G2.2.a.1"
## [337] "G2.2.a.2" "G2.2.b.1" "G2.2.b.2" "G2.2.c.1" "G2.2.c.2" "H1"      
## [343] "H2.1"     "H2.2"     "H3.1"     "H3.2"     "H3.3"     "H3.4"    
## [349] "H3.5"     "H3.6"     "H3.7"     "H3.8"     "H3.9"     "H3.10"   
## [355] "H3.11"    "H3.12"    "H3.13"    "H3.14"    "H3.15"    "H3.16"   
## [361] "H3.17"    "H3.18"    "H3.19"    "H3.20"    "H3.21"    "H3.22"   
## [367] "H3.23"    "H3.24"    "H3.25"    "H3.26"    "H3.27"    "H3.28"   
## [373] "H3.29"    "H3.30"    "H3.31"    "H3.32"    "H3.33"    "H3.34"   
## [379] "H3.35"    "H3.36"    "H3.37"    "H3.38"    "H3.39"    "H3.40"   
## [385] "H3.41"    "H3.42"    "H3.43"    "H3.44"    "H3.45"    "H3.46"   
## [391] "H3.47"    "H3.48"    "H3.49"    "H3.50"    "H3.51"    "H3.52"   
## [397] "H3.53"    "H3.54"    "H3.55"    "H3.56"    "H3.57"    "H3.88"   
## [403] "H4.1"     "H4.2"     "H4.3"     "H3.a"     "I1.1.1"   "I1.1.2"  
## [409] "I1.1.3"   "I1.1.4"   "I1.1.5"   "I1.1.6"   "I1.1.7"   "I1.1.88" 
## [415] "I1.1.90"  "I1.2.1"   "I1.2.2"   "I1.2.3"   "I1.2.4"   "I1.2.5"  
## [421] "I1.2.6"   "I1.2.7"   "I1.2.88"  "I1.2.90"  "I2a"      "I2b.1"   
## [427] "I2b.2"    "I2c.1"    "I2c.2"    "I2c.3"    "I2c.4"    "I2c.5"   
## [433] "I2c.6"    "I2c.7"    "I2c.8"    "I2c.9"    "I2c.10"   "I2c.11"  
## [439] "I2c.12"   "I2c.13"   "I2c.14"   "I2c.15"   "I2c.16"   "I2c.88"  
## [445] "I2d.1"    "I2d.2"    "I2d.3"    "I2d.4"    "I2d.5"    "I2d.6"   
## [451] "I2d.7"    "I2d.8"    "I2d.9"    "I2d.10"   "I2d.11"   "I2d.12"  
## [457] "I2d.88"   "I2e"      "I2e.a"    "I2f.1"    "I2f.2"    "I2f.3"   
## [463] "I2f.4"    "I2f.5"    "I2f.6"    "I2f.7"    "I2f.8"    "I2f.9"   
## [469] "I2f.10"   "I3a"      "I3b.1"    "I3b.2"    "I3c"      "I3d.1"   
## [475] "I3d.2"    "I3d.3"    "I3d.4"    "I3d.5"    "I3d.6"    "I3d.7"   
## [481] "I3d.8"    "I3d.9"    "I3d.10"   "I3d.11"   "I3d.12"   "I3d.13"  
## [487] "I3d.14"   "I3d.15"   "I3d.16"   "I3d.17"   "I3d.88"   "I3e.1"   
## [493] "I3e.2"    "I3e.3"    "I3e.4"    "I3f"      "I1.2.a"   "I1.1.a"  
## [499] "I2c.a"    "I2d.a"    "I3c.a"    "I3d.a"    "J1"       "J1.a"    
## [505] "J2"       "J2.a"     "J3"       "J3.a"     "J4.1"     "J4.2"    
## [511] "J4.3"     "J4.4"     "J4.5"     "J5a.1"    "J5a.2"    "J5a.3"   
## [517] "J5a.4"    "J5a.5"    "J5a.6"    "J5a.7"    "J5a.8"    "J5a.9"   
## [523] "J5a.10"   "J5a.88"   "J5a.90"   "J5a.a"    "J5b.1"    "J5b.2"   
## [529] "J5b.3"    "J5b.4"    "J5b.5"    "J5b.6"    "J5b.88"   "J5b.90"  
## [535] "J5b.101"  "J5b.a"    "K1.1"     "K1.2"     "K1.3"     "K1.4"    
## [541] "K1.5"     "K1.6"     "K1.7"     "L1a"      "L1b"      "L1c"     
## [547] "L2.1"     "L2.2"     "L2.3"     "L2.4"     "L2.5"     "L2.6"    
## [553] "L3"       "L4"       "L5"       "L6"       "L7a"      "L7b"     
## [559] "L7c"      "L8"       "M1"       "M2"       "M3a"      "M3b"     
## [565] "M4"       "M5.1"     "M5.2"     "N1a"      "N1b"      "N1c"     
## [571] "N2.1"     "N2.2"     "N2.3"     "N2.4"     "N2.5"     "N2.6"    
## [577] "N2.7"     "N2.8"     "O1a"      "O1a.a"    "O1b"      "O2"      
## [583] "O3a"      "O3b.1"    "O3b.2"    "O3b.3"    "O3b.4"    "O3b.5"   
## [589] "O3b.6"    "O3b.7"    "O3b.8"    "O3b.9"    "O3b.10"   "O3b.90"  
## [595] "O3c.1"    "O3c.2"    "O3c.3"    "O3c.4"    "O3c.5"    "O3c.6"   
## [601] "O3c.7"    "O3c.8"    "O3c.9"    "O3c.10"   "O3c.90"   "O4a.1"   
## [607] "O4a.2"    "O4a.3"    "O4a.4"    "O4a.5"    "O4a.6"    "O4a.7"   
## [613] "O4a.8"    "O4a.9"    "O4a.10"   "O4a.90"   "O4b.1"    "O4b.2"   
## [619] "O4b.3"    "O4b.4"    "O4b.5"    "O4b.6"    "O4b.7"    "O4b.8"   
## [625] "O4b.9"    "O4b.10"   "O4b.90"   "O5"       "O6"       "O7a"     
## [631] "O8"       "O9"       "O9.a"     "O10"      "P1.1"     "P1.2"    
## [637] "P1.3"     "P1.4"     "P1.5"     "P1.6"     "P1.7"     "P1.8"    
## [643] "P1.9"     "P1.10"    "P2.1"     "P2.2"     "P2.3"     "P2.4"    
## [649] "P2.5"     "P2.6"     "P2.7"     "P2.8"     "P2.9"     "P2.10"   
## [655] "P3.1"     "P3.2"     "P3.3"     "P3.4"     "P3.5"     "P4"      
## [661] "P5"       "Q1"       "Q1.a"     "Q2"       "Q3a"      "Q3b"     
## [667] "Q2.a"     "Q3a.a"    "Q3b.a"    "Q4"       "RA2"      "RRA2"    
## [673] "Rcity"    "ORcity1"  "RA8"      "RB2"      "RRB2"     "RB4"     
## [679] "RRB4"     "RB6"      "RRB6"     "RC2"      "RRC2"     "RD5.1.a" 
## [685] "RD5.1.b"  "RD5.2.a"  "RD5.2.b"  "RD5.3.a"  "RD5.3.b"  "RD6.6"   
## [691] "RE1b"     "RRE1b"    "RE2b"     "RRE2b"    "RF1b"     "RRF1b"   
## [697] "RF2b"     "RRF2b"    "RG1a"     "RG1b"     "RG1c"     "RG1e"    
## [703] "RG2.1.a"  "RRG2.1.a" "RG2.1.b"  "RRG2.1.b" "RG2.1.c"  "RRG2.1.c"
## [709] "RG2.2.a"  "RRG2.2.a" "RG2.2.b"  "RRG2.2.b" "RG2.2.c"  "RRG2.2.c"
## [715] "RH2"      "RRH2"     "RI2b"     "RRI2b"    "RI2e"     "RI3b"    
## [721] "RRI3b"    "RI3c"     "RJ4.1"    "RJ4.2"    "RJ4.3"    "RJ4.4"   
## [727] "RJ4.5"    "RQ3b.a"   "RB13"     "Weight"   "agegroup"
DF6 <- TY1[,c(731,407:413)]
DF6[is.na(DF6)] <- 0

DF7 <- gather(DF6, key = "cope", value = "count",  I1.1.1,I1.1.2,I1.1.3,I1.1.4,I1.1.5,I1.1.6,I1.1.7)
## Warning: attributes are not identical across measure variables;
## they will be dropped
DF8 <- subset(DF7, count==1)

sjt.xtab(DF8$agegroup,DF8$cope,encoding = "big-5",show.cell.prc = T,
         show.row.prc = T,
         show.col.prc = T)
agegroup cope Total
I1.1.1 I1.1.2 I1.1.3 I1.1.4 I1.1.5 I1.1.6 I1.1.7
老年 254
77.7 %
16.1 %
9.3 %
39
11.9 %
5.3 %
1.4 %
21
6.4 %
9.6 %
0.8 %
4
1.2 %
7 %
0.1 %
1
0.3 %
11.1 %
0 %
6
1.8 %
9.7 %
0.2 %
2
0.6 %
3.2 %
0.1 %
327
100 %
12 %
11.9 %
中年 537
63.5 %
34.1 %
19.7 %
205
24.2 %
27.9 %
7.5 %
71
8.4 %
32.4 %
2.6 %
10
1.2 %
17.5 %
0.4 %
3
0.4 %
33.3 %
0.1 %
14
1.7 %
22.6 %
0.5 %
6
0.7 %
9.5 %
0.2 %
846
100 %
31.1 %
31 %
青年 785
50.7 %
49.8 %
28.8 %
491
31.7 %
66.8 %
18 %
127
8.2 %
58 %
4.7 %
43
2.8 %
75.4 %
1.6 %
5
0.3 %
55.6 %
0.2 %
42
2.7 %
67.7 %
1.5 %
55
3.6 %
87.3 %
2 %
1548
100 %
56.9 %
56.8 %
Total 1576
57.9 %
100 %
57.9 %
735
27 %
100 %
27 %
219
8 %
100 %
8 %
57
2.1 %
100 %
2.1 %
9
0.3 %
100 %
0.3 %
62
2.3 %
100 %
2.3 %
63
2.3 %
100 %
2.3 %
2721
100 %
100 %
100 %
χ2=119.140 · df=12 · Cramer’s V=0.148 · Fisher’s p=0.000
class(DF8$agegroup)
## [1] "factor"
class(DF8$cope)
## [1] "character"
DF8$cope <- as.factor(DF8$cope)

library(plyr)
ess2 = ddply(DF8,.(cope),function(.){
  res = prop.table(table(factor(.$agegroup)))
  res2 = table(factor(.$agegroup))
  data.frame(lab=names(res), y=c(res),yy =c(res2))
})

ggplot(DF8,
       aes(cope, fill=agegroup))+
  geom_bar(position = "dodge")+
  labs(title = "偏好使用之即時通訊軟體",
       x="各年齡層",y="人數",
       caption="藝馨製 資料來源:台灣傳播調查資料庫")+
  theme(panel.background = element_blank())+
  theme(plot.title = element_text(hjust = 0.5))+
  theme(axis.title.y = element_text(vjust = 0.5, hjust = 0.5, angle = 0))+
  geom_text(stat="count",aes(label=..count..),size=3,
            position = position_dodge(width = 1))+
  scale_x_discrete("即時通訊軟體",labels = c("I1.1.1"="Line","I1.1.2"="Facebook Messenger","I1.1.3"="Wechat",
                                       "I1.1.4"="WhatsApp","I1.1.5"="Hangouts","I1.1.6"="Skype","I1.1.7"="Facetime"))+
  scale_fill_manual("各年齡層",values=c("lightskyblue1", "rosybrown2", "steelblue1","tomato1"))+
  theme(axis.text.x = element_text(vjust = 0.9,hjust = 1, angle=30))

#偏好使用之社群媒體(表一)
names(TY1)
##   [1] "ID"       "A1"       "A2"       "A3"       "A3.a"     "A4a.1"   
##   [7] "A4b"      "A5"       "A5.a"     "A6"       "A6.a"     "A7"      
##  [13] "A7.a"     "A8"       "A8.a"     "B1"       "B2.1"     "B2.2"    
##  [19] "B3"       "B4.1"     "B4.2"     "B5"       "B6.1"     "B6.2"    
##  [25] "B7"       "B8.1"     "B8.2"     "B8.3"     "B8.4"     "B8.5"    
##  [31] "B8.6"     "B8.7"     "B8.8"     "B8.9"     "B8.10"    "B8.11"   
##  [37] "B8.12"    "B8.13"    "B8.14"    "B8.15"    "B8.16"    "B8.17"   
##  [43] "B8.18"    "B8.19"    "B8.20"    "B8.21"    "B8.22"    "B8.23"   
##  [49] "B8.24"    "B8.25"    "B8.26"    "B8.27"    "B8.28"    "B8.29"   
##  [55] "B8.30"    "B8.31"    "B8.32"    "B8.33"    "B8.34"    "B8.35"   
##  [61] "B8.36"    "B8.37"    "B8.38"    "B8.88"    "B7.a"     "B8.a"    
##  [67] "C1"       "C2.1"     "C2.2"     "C3.1"     "C3.2"     "C3.3"    
##  [73] "C3.4"     "C3.5"     "C3.6"     "C3.7"     "C3.8"     "C3.9"    
##  [79] "C3.10"    "C3.11"    "C3.12"    "C3.13"    "C3.14"    "C3.15"   
##  [85] "C3.16"    "C3.17"    "C3.18"    "C3.19"    "C3.20"    "C3.21"   
##  [91] "C3.22"    "C3.23"    "C3.24"    "C3.25"    "C3.26"    "C3.27"   
##  [97] "C3.28"    "C3.88"    "C3.a"     "D1"       "D2"       "D3"      
## [103] "D4"       "D5.1.a"   "D5.1.b"   "D5.2.a"   "D5.2.b"   "D5.3.a"  
## [109] "D5.3.b"   "D6.1"     "D6.2"     "D6.3"     "D6.4.a"   "D6.4.b"  
## [115] "D6.4.c"   "D6.5"     "D6.6"     "D7.1"     "D7.2"     "D7.3"    
## [121] "D7.4"     "D7.5"     "D7.6"     "D7.7"     "D7.8"     "D7.9"    
## [127] "D7.10"    "D7.11"    "D7.12"    "D7.13"    "D7.14"    "D7.15"   
## [133] "D7.16"    "D7.17"    "D7.18"    "D7.19"    "D7.20"    "D7.21"   
## [139] "D7.22"    "D7.23"    "D7.24"    "D7.25"    "D7.26"    "D7.27"   
## [145] "D7.28"    "D7.29"    "D7.30"    "D7.31"    "D7.32"    "D7.33"   
## [151] "D7.34"    "D7.35"    "D7.36"    "D7.37"    "D7.38"    "D7.39"   
## [157] "D7.40"    "D7.41"    "D7.42"    "D7.43"    "D7.44"    "D7.45"   
## [163] "D7.46"    "D7.47"    "D7.48"    "D7.49"    "D7.88"    "D7.a"    
## [169] "E1a"      "E1b.1"    "E1b.2"    "E2a"      "E2b.1"    "E2b.2"   
## [175] "E3.1"     "E3.2"     "E3.3"     "E3.4"     "E3.5"     "E3.6"    
## [181] "E3.7"     "E3.8"     "E3.9"     "E3.10"    "E3.11"    "E3.12"   
## [187] "E3.13"    "E3.14"    "E3.15"    "E3.16"    "E3.17"    "E3.18"   
## [193] "E3.19"    "E3.20"    "E3.21"    "E3.22"    "E3.23"    "E3.24"   
## [199] "E3.25"    "E3.26"    "E3.27"    "E3.28"    "E3.29"    "E3.30"   
## [205] "E3.31"    "E3.88"    "E3.a"     "F1a"      "F1b.1"    "F1b.2"   
## [211] "F1c.1"    "F1c.2"    "F1c.3"    "F1c.4"    "F1c.5"    "F1c.6"   
## [217] "F1c.7"    "F1c.8"    "F1c.9"    "F1c.10"   "F1c.11"   "F1c.12"  
## [223] "F1c.13"   "F1c.14"   "F1c.15"   "F1c.16"   "F1c.17"   "F1c.18"  
## [229] "F1c.19"   "F1c.20"   "F1c.21"   "F1c.22"   "F1c.23"   "F1c.24"  
## [235] "F1c.25"   "F1c.26"   "F1c.27"   "F1c.28"   "F1c.29"   "F1c.30"  
## [241] "F1c.31"   "F1c.32"   "F1c.33"   "F1c.34"   "F1c.35"   "F1c.88"  
## [247] "F1c.a"    "F2a"      "F2b.1"    "F2b.2"    "F2c.1"    "F2c.2"   
## [253] "F2c.3"    "F2c.4"    "F2c.5"    "F2c.6"    "F2c.7"    "F2c.8"   
## [259] "F2c.9"    "F2c.10"   "F2c.11"   "F2c.12"   "F2c.13"   "F2c.14"  
## [265] "F2c.15"   "F2c.16"   "F2c.17"   "F2c.18"   "F2c.19"   "F2c.20"  
## [271] "F2c.21"   "F2c.22"   "F2c.23"   "F2c.24"   "F2c.25"   "F2c.26"  
## [277] "F2c.27"   "F2c.28"   "F2c.29"   "F2c.30"   "F2c.31"   "F2c.32"  
## [283] "F2c.33"   "F2c.34"   "F2c.35"   "F2c.36"   "F2c.37"   "F2c.38"  
## [289] "F2c.39"   "F2c.40"   "F2c.41"   "F2c.42"   "F2c.43"   "F2c.88"  
## [295] "F2c.a"    "F3.1"     "F3.2"     "F3.3"     "F3.4"     "F3.5"    
## [301] "F3.6"     "F3.7"     "F3.8"     "F3.9"     "F3.10"    "F3.11"   
## [307] "F3.12"    "F3.13"    "F3.14"    "F3.15"    "F3.16"    "F3.17"   
## [313] "F3.18"    "F3.19"    "F3.20"    "F3.21"    "F3.22"    "F3.23"   
## [319] "F3.24"    "F3.25"    "F3.26"    "F3.88"    "F3.a"     "G1a"     
## [325] "G1b"      "G1c"      "G1d"      "G1e"      "G1f"      "G2.1.a.1"
## [331] "G2.1.a.2" "G2.1.b.1" "G2.1.b.2" "G2.1.c.1" "G2.1.c.2" "G2.2.a.1"
## [337] "G2.2.a.2" "G2.2.b.1" "G2.2.b.2" "G2.2.c.1" "G2.2.c.2" "H1"      
## [343] "H2.1"     "H2.2"     "H3.1"     "H3.2"     "H3.3"     "H3.4"    
## [349] "H3.5"     "H3.6"     "H3.7"     "H3.8"     "H3.9"     "H3.10"   
## [355] "H3.11"    "H3.12"    "H3.13"    "H3.14"    "H3.15"    "H3.16"   
## [361] "H3.17"    "H3.18"    "H3.19"    "H3.20"    "H3.21"    "H3.22"   
## [367] "H3.23"    "H3.24"    "H3.25"    "H3.26"    "H3.27"    "H3.28"   
## [373] "H3.29"    "H3.30"    "H3.31"    "H3.32"    "H3.33"    "H3.34"   
## [379] "H3.35"    "H3.36"    "H3.37"    "H3.38"    "H3.39"    "H3.40"   
## [385] "H3.41"    "H3.42"    "H3.43"    "H3.44"    "H3.45"    "H3.46"   
## [391] "H3.47"    "H3.48"    "H3.49"    "H3.50"    "H3.51"    "H3.52"   
## [397] "H3.53"    "H3.54"    "H3.55"    "H3.56"    "H3.57"    "H3.88"   
## [403] "H4.1"     "H4.2"     "H4.3"     "H3.a"     "I1.1.1"   "I1.1.2"  
## [409] "I1.1.3"   "I1.1.4"   "I1.1.5"   "I1.1.6"   "I1.1.7"   "I1.1.88" 
## [415] "I1.1.90"  "I1.2.1"   "I1.2.2"   "I1.2.3"   "I1.2.4"   "I1.2.5"  
## [421] "I1.2.6"   "I1.2.7"   "I1.2.88"  "I1.2.90"  "I2a"      "I2b.1"   
## [427] "I2b.2"    "I2c.1"    "I2c.2"    "I2c.3"    "I2c.4"    "I2c.5"   
## [433] "I2c.6"    "I2c.7"    "I2c.8"    "I2c.9"    "I2c.10"   "I2c.11"  
## [439] "I2c.12"   "I2c.13"   "I2c.14"   "I2c.15"   "I2c.16"   "I2c.88"  
## [445] "I2d.1"    "I2d.2"    "I2d.3"    "I2d.4"    "I2d.5"    "I2d.6"   
## [451] "I2d.7"    "I2d.8"    "I2d.9"    "I2d.10"   "I2d.11"   "I2d.12"  
## [457] "I2d.88"   "I2e"      "I2e.a"    "I2f.1"    "I2f.2"    "I2f.3"   
## [463] "I2f.4"    "I2f.5"    "I2f.6"    "I2f.7"    "I2f.8"    "I2f.9"   
## [469] "I2f.10"   "I3a"      "I3b.1"    "I3b.2"    "I3c"      "I3d.1"   
## [475] "I3d.2"    "I3d.3"    "I3d.4"    "I3d.5"    "I3d.6"    "I3d.7"   
## [481] "I3d.8"    "I3d.9"    "I3d.10"   "I3d.11"   "I3d.12"   "I3d.13"  
## [487] "I3d.14"   "I3d.15"   "I3d.16"   "I3d.17"   "I3d.88"   "I3e.1"   
## [493] "I3e.2"    "I3e.3"    "I3e.4"    "I3f"      "I1.2.a"   "I1.1.a"  
## [499] "I2c.a"    "I2d.a"    "I3c.a"    "I3d.a"    "J1"       "J1.a"    
## [505] "J2"       "J2.a"     "J3"       "J3.a"     "J4.1"     "J4.2"    
## [511] "J4.3"     "J4.4"     "J4.5"     "J5a.1"    "J5a.2"    "J5a.3"   
## [517] "J5a.4"    "J5a.5"    "J5a.6"    "J5a.7"    "J5a.8"    "J5a.9"   
## [523] "J5a.10"   "J5a.88"   "J5a.90"   "J5a.a"    "J5b.1"    "J5b.2"   
## [529] "J5b.3"    "J5b.4"    "J5b.5"    "J5b.6"    "J5b.88"   "J5b.90"  
## [535] "J5b.101"  "J5b.a"    "K1.1"     "K1.2"     "K1.3"     "K1.4"    
## [541] "K1.5"     "K1.6"     "K1.7"     "L1a"      "L1b"      "L1c"     
## [547] "L2.1"     "L2.2"     "L2.3"     "L2.4"     "L2.5"     "L2.6"    
## [553] "L3"       "L4"       "L5"       "L6"       "L7a"      "L7b"     
## [559] "L7c"      "L8"       "M1"       "M2"       "M3a"      "M3b"     
## [565] "M4"       "M5.1"     "M5.2"     "N1a"      "N1b"      "N1c"     
## [571] "N2.1"     "N2.2"     "N2.3"     "N2.4"     "N2.5"     "N2.6"    
## [577] "N2.7"     "N2.8"     "O1a"      "O1a.a"    "O1b"      "O2"      
## [583] "O3a"      "O3b.1"    "O3b.2"    "O3b.3"    "O3b.4"    "O3b.5"   
## [589] "O3b.6"    "O3b.7"    "O3b.8"    "O3b.9"    "O3b.10"   "O3b.90"  
## [595] "O3c.1"    "O3c.2"    "O3c.3"    "O3c.4"    "O3c.5"    "O3c.6"   
## [601] "O3c.7"    "O3c.8"    "O3c.9"    "O3c.10"   "O3c.90"   "O4a.1"   
## [607] "O4a.2"    "O4a.3"    "O4a.4"    "O4a.5"    "O4a.6"    "O4a.7"   
## [613] "O4a.8"    "O4a.9"    "O4a.10"   "O4a.90"   "O4b.1"    "O4b.2"   
## [619] "O4b.3"    "O4b.4"    "O4b.5"    "O4b.6"    "O4b.7"    "O4b.8"   
## [625] "O4b.9"    "O4b.10"   "O4b.90"   "O5"       "O6"       "O7a"     
## [631] "O8"       "O9"       "O9.a"     "O10"      "P1.1"     "P1.2"    
## [637] "P1.3"     "P1.4"     "P1.5"     "P1.6"     "P1.7"     "P1.8"    
## [643] "P1.9"     "P1.10"    "P2.1"     "P2.2"     "P2.3"     "P2.4"    
## [649] "P2.5"     "P2.6"     "P2.7"     "P2.8"     "P2.9"     "P2.10"   
## [655] "P3.1"     "P3.2"     "P3.3"     "P3.4"     "P3.5"     "P4"      
## [661] "P5"       "Q1"       "Q1.a"     "Q2"       "Q3a"      "Q3b"     
## [667] "Q2.a"     "Q3a.a"    "Q3b.a"    "Q4"       "RA2"      "RRA2"    
## [673] "Rcity"    "ORcity1"  "RA8"      "RB2"      "RRB2"     "RB4"     
## [679] "RRB4"     "RB6"      "RRB6"     "RC2"      "RRC2"     "RD5.1.a" 
## [685] "RD5.1.b"  "RD5.2.a"  "RD5.2.b"  "RD5.3.a"  "RD5.3.b"  "RD6.6"   
## [691] "RE1b"     "RRE1b"    "RE2b"     "RRE2b"    "RF1b"     "RRF1b"   
## [697] "RF2b"     "RRF2b"    "RG1a"     "RG1b"     "RG1c"     "RG1e"    
## [703] "RG2.1.a"  "RRG2.1.a" "RG2.1.b"  "RRG2.1.b" "RG2.1.c"  "RRG2.1.c"
## [709] "RG2.2.a"  "RRG2.2.a" "RG2.2.b"  "RRG2.2.b" "RG2.2.c"  "RRG2.2.c"
## [715] "RH2"      "RRH2"     "RI2b"     "RRI2b"    "RI2e"     "RI3b"    
## [721] "RRI3b"    "RI3c"     "RJ4.1"    "RJ4.2"    "RJ4.3"    "RJ4.4"   
## [727] "RJ4.5"    "RQ3b.a"   "RB13"     "Weight"   "agegroup"
DF9 <- data.frame(TY1[,c(731, 416:422)])
DF9[is.na(DF9)] <- 0

DF10 <- gather(DF9, key = "cope", value = "count",I1.2.1,I1.2.2,I1.2.3,I1.2.4,I1.2.5,I1.2.6,I1.2.7)
## Warning: attributes are not identical across measure variables;
## they will be dropped
DF11 <- subset(DF10, count==1)
#install.packages("sjPlot")
library(sjPlot)

sjt.xtab(DF11$agegroup,DF11$cope,encoding = "big-5",show.cell.prc = T,
         show.row.prc = T,
         show.col.prc = T)
agegroup cope Total
I1.2.1 I1.2.2 I1.2.3 I1.2.4 I1.2.5 I1.2.6 I1.2.7
老年 135
46.9 %
10.8 %
4.6 %
141
49 %
12.3 %
4.8 %
2
0.7 %
3.9 %
0.1 %
3
1 %
17.6 %
0.1 %
4
1.4 %
1 %
0.1 %
2
0.7 %
4.7 %
0.1 %
1
0.3 %
3.8 %
0 %
288
100 %
9.8 %
9.8 %
中年 400
47.3 %
31.9 %
13.6 %
359
42.4 %
31.3 %
12.2 %
5
0.6 %
9.8 %
0.2 %
5
0.6 %
29.4 %
0.2 %
60
7.1 %
14.7 %
2 %
14
1.7 %
32.6 %
0.5 %
3
0.4 %
11.5 %
0.1 %
846
100 %
28.7 %
28.8 %
青年 717
39.6 %
57.3 %
24.4 %
646
35.7 %
56.4 %
21.9 %
44
2.4 %
86.3 %
1.5 %
9
0.5 %
52.9 %
0.3 %
345
19.1 %
84.4 %
11.7 %
27
1.5 %
62.8 %
0.9 %
22
1.2 %
84.6 %
0.7 %
1810
100 %
61.5 %
61.4 %
Total 1252
42.5 %
100 %
42.5 %
1146
38.9 %
100 %
38.9 %
51
1.7 %
100 %
1.7 %
17
0.6 %
100 %
0.6 %
409
13.9 %
100 %
13.9 %
43
1.5 %
100 %
1.5 %
26
0.9 %
100 %
0.9 %
2944
100 %
100 %
100 %
χ2=141.546 · df=12 · Cramer’s V=0.155 · Fisher’s p=0.000
class(DF11$agegroup)
## [1] "factor"
class(DF11$cope)
## [1] "character"
DF11$cope <- as.factor(DF11$cope)

library(plyr)
ess2 = ddply(DF11,.(cope),function(.){
  res = prop.table(table(factor(.$agegroup)))
  res2 = table(factor(.$agegroup))
  data.frame(lab=names(res), y=c(res),yy =c(res2))
})

ggplot(DF11, 
       aes(cope, fill=agegroup))+
  geom_bar(position = "dodge")+
  labs(title = "使用社群媒體",
       x="各年齡層",y="人數",
       subtitle="60+熟齡族與其他年齡有差異?",
       caption="第三組製 資料來源:台灣傳播調查資料庫")+
  theme(panel.background = element_blank())+
  theme(plot.title = element_text(hjust = 0.5))+
  theme(axis.title.y = element_text(vjust = 0.5, hjust = 0.5, angle = 0))+
  geom_text(stat="count",aes(label=..count..),size=3,
            position = position_dodge(width = 1))+
  scale_x_discrete("使用社群媒體",labels = c("I1.2.1"="Facebook","I1.2.2"="YouTube","I1.2.3"="Twitter",
                                       "I1.2.4"="LinkedIn","I1.2.5"="Instagram","I1.2.6"="微博","I1.2.7"="Plurk"))+
  scale_fill_manual("各年齡層",values=c("lightskyblue1", "rosybrown2", "steelblue1","tomato1"))+
  theme(axis.text.x = element_text(vjust = 0.9,hjust = 1, angle=30))