library(wooldridge)
## Warning: package 'wooldridge' was built under R version 4.0.5
data(hprice1)
head(force(hprice1),n=5)
##   price assess bdrms lotsize sqrft colonial   lprice  lassess llotsize   lsqrft
## 1   300  349.1     4    6126  2438        1 5.703783 5.855359 8.720297 7.798934
## 2   370  351.5     3    9903  2076        1 5.913503 5.862210 9.200593 7.638198
## 3   191  217.7     3    5200  1374        0 5.252274 5.383118 8.556414 7.225482
## 4   195  231.8     3    4600  1448        1 5.273000 5.445875 8.433811 7.277938
## 5   373  319.1     4    6095  2514        1 5.921578 5.765504 8.715224 7.829630
  1. Estimacion de modelo:
options(scipen = 999999)
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
modelo_precios<-lm(formula = price ~ lotsize + sqrft + bdrms, data = hprice1)
summary(modelo_precios)
## 
## Call:
## lm(formula = price ~ lotsize + sqrft + bdrms, data = hprice1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -120.026  -38.530   -6.555   32.323  209.376 
## 
## Coefficients:
##                Estimate  Std. Error t value           Pr(>|t|)    
## (Intercept) -21.7703081  29.4750419  -0.739            0.46221    
## lotsize       0.0020677   0.0006421   3.220            0.00182 ** 
## sqrft         0.1227782   0.0132374   9.275 0.0000000000000166 ***
## bdrms        13.8525217   9.0101454   1.537            0.12795    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 59.83 on 84 degrees of freedom
## Multiple R-squared:  0.6724, Adjusted R-squared:  0.6607 
## F-statistic: 57.46 on 3 and 84 DF,  p-value: < 0.00000000000000022
  1. Indice de condicion:
library(mctest)
library(stargazer)
library(haven)
## Warning: package 'haven' was built under R version 4.0.5
source(file = "C:/Users/Logistica4sv/Downloads/correccion_eigprop.R")
my_eigprop(mod = modelo_precios)
## 
## Call:
## my_eigprop(mod = modelo_precios)
## 
##   Eigenvalues      CI (Intercept) lotsize  sqrft  bdrms
## 1      3.4816  1.0000      0.0037  0.0278 0.0042 0.0029
## 2      0.4552  2.7656      0.0068  0.9671 0.0061 0.0051
## 3      0.0385  9.5082      0.4726  0.0051 0.8161 0.0169
## 4      0.0247 11.8678      0.5170  0.0000 0.1737 0.9750
## 
## ===============================
## Row 2==> lotsize, proportion 0.967080 >= 0.50 
## Row 3==> sqrft, proportion 0.816079 >= 0.50 
## Row 4==> bdrms, proportion 0.975026 >= 0.50

#La multicolinealidad es leve por ser <20, no se considera un problema.

2.1 Indicie de condicion manual

Xmat<-model.matrix(modelo_precios)
print(Xmat)
##    (Intercept) lotsize sqrft bdrms
## 1            1    6126  2438     4
## 2            1    9903  2076     3
## 3            1    5200  1374     3
## 4            1    4600  1448     3
## 5            1    6095  2514     4
## 6            1    8566  2754     5
## 7            1    9000  2067     3
## 8            1    6210  1731     3
## 9            1    6000  1767     3
## 10           1    2892  1890     3
## 11           1    6000  2336     4
## 12           1    7047  2634     5
## 13           1   12237  3375     3
## 14           1    6460  1899     3
## 15           1    6519  2312     3
## 16           1    3597  1760     4
## 17           1    5922  2000     4
## 18           1    7123  1774     3
## 19           1    5642  1376     3
## 20           1    8602  1835     4
## 21           1    5494  2048     3
## 22           1    7800  2124     3
## 23           1    6003  1768     3
## 24           1    5218  1732     4
## 25           1    9425  1440     3
## 26           1    6114  1932     3
## 27           1    6710  1932     3
## 28           1    8577  2106     3
## 29           1    8400  3529     7
## 30           1    9773  2051     4
## 31           1    4806  1573     4
## 32           1   15086  2829     4
## 33           1    5763  1630     3
## 34           1    6383  1840     4
## 35           1    9000  2066     4
## 36           1    3500  1702     4
## 37           1   10892  2750     4
## 38           1   15634  3880     5
## 39           1    6400  1854     4
## 40           1    8880  1421     2
## 41           1    6314  1662     3
## 42           1   28231  3331     5
## 43           1    7050  1656     4
## 44           1    5305  1171     3
## 45           1    6637  2293     5
## 46           1    7834  1764     3
## 47           1    1000  2768     3
## 48           1    8112  3733     4
## 49           1    5850  1536     3
## 50           1    6660  1638     4
## 51           1    6637  1972     3
## 52           1   15267  1478     2
## 53           1    5146  1408     3
## 54           1    6017  1812     3
## 55           1    8410  1722     3
## 56           1    5625  1780     4
## 57           1    5600  1674     4
## 58           1    6525  1850     4
## 59           1    6060  1925     3
## 60           1    5539  2343     4
## 61           1    7566  1567     3
## 62           1    5484  1664     4
## 63           1    5348  1386     6
## 64           1   15834  2617     5
## 65           1    8022  2321     4
## 66           1   11966  2638     4
## 67           1    8460  1915     4
## 68           1   15105  2589     4
## 69           1   10859  2709     4
## 70           1    6300  1587     3
## 71           1   11554  1694     3
## 72           1    6000  1536     3
## 73           1   31000  3662     5
## 74           1    4054  1736     3
## 75           1   20700  2205     2
## 76           1    5525  1502     3
## 77           1   92681  1696     4
## 78           1    8178  2186     3
## 79           1    5944  1928     4
## 80           1   18838  1294     3
## 81           1    4315  1535     4
## 82           1    5167  1980     3
## 83           1    7893  2090     4
## 84           1    6056  1837     3
## 85           1    5828  1715     3
## 86           1    6341  1574     3
## 87           1    6362  1185     2
## 88           1    4950  1774     4
## attr(,"assign")
## [1] 0 1 2 3
  1. Prueba FG.
library(mctest)
mctest(modelo_precios)
## 
## Call:
## omcdiag(mod = mod, Inter = TRUE, detr = detr, red = red, conf = conf, 
##     theil = theil, cn = cn)
## 
## 
## Overall Multicollinearity Diagnostics
## 
##                        MC Results detection
## Determinant |X'X|:         0.6918         0
## Farrar Chi-Square:        31.3812         1
## Red Indicator:             0.3341         0
## Sum of Lambda Inverse:     3.8525         0
## Theil's Method:           -0.7297         0
## Condition Number:         11.8678         0
## 
## 1 --> COLLINEARITY is detected by the test 
## 0 --> COLLINEARITY is not detected by the test
library(psych)
## Warning: package 'psych' was built under R version 4.0.5
library(fastGraph)
## Warning: package 'fastGraph' was built under R version 4.0.5
FG_test<-cortest.bartlett(Xmat[,-1])
## R was not square, finding R from data
print(FG_test)
## $chisq
## [1] 31.38122
## 
## $p.value
## [1] 0.0000007065806
## 
## $df
## [1] 3
VC_1<-qchisq(0.05,FG_test$df,lower.tail = FALSE)
shadeDist(xshade = FG_test$chisq,
          ddist = "dchisq",
          parm1 = FG_test$df,
          lower.tail = FALSE,
          sub=paste("VC:",VC_1,"FG:",FG_test$chisq))

Valor critico de 7.814 y prueba FG redondeada, se rechaza la Ho.

  1. factores inflacionarios.
library(mctest)
mc.plot(modelo_precios, vif = 2)