library(wooldridge)
library(printr)
data(hprice1)
head(force(hprice1),n=5)
| price | assess | bdrms | lotsize | sqrft | colonial | lprice | lassess | llotsize | lsqrft |
|---|---|---|---|---|---|---|---|---|---|
| 300 | 349.1 | 4 | 6126 | 2438 | 1 | 5.703783 | 5.855359 | 8.720297 | 7.798934 |
| 370 | 351.5 | 3 | 9903 | 2076 | 1 | 5.913503 | 5.862210 | 9.200593 | 7.638198 |
| 191 | 217.7 | 3 | 5200 | 1374 | 0 | 5.252274 | 5.383118 | 8.556414 | 7.225481 |
| 195 | 231.8 | 3 | 4600 | 1448 | 1 | 5.273000 | 5.445875 | 8.433811 | 7.277938 |
| 373 | 319.1 | 4 | 6095 | 2514 | 1 | 5.921578 | 5.765504 | 8.715224 | 7.829630 |
modelo_precio<-lm(formula = price~lotsize+sqrft+bdrms,data = hprice1)
library(stargazer)
stargazer(modelo_precio,title="Modelo Precio",type = "html", digits=4)
| Dependent variable: | |
| price | |
| lotsize | 0.0021*** |
| (0.0006) | |
| sqrft | 0.1228*** |
| (0.0132) | |
| bdrms | 13.8525 |
| (9.0101) | |
| Constant | -21.7703 |
| (29.4750) | |
| Observations | 88 |
| R2 | 0.6724 |
| Adjusted R2 | 0.6607 |
| Residual Std. Error | 59.8335 (df = 84) |
| F Statistic | 57.4602*** (df = 3; 84) |
| Note: | p<0.1; p<0.05; p<0.01 |
\(\kappa (x)= \sqrt {\lambda_{max}\over \lambda_{min}}\)
si \(\kappa (x)<20\) : Multicolinalidad leve
si \(20\leq\kappa (x)<30\) : Multicolinalidad moderada
si \(\kappa (x)\geq30\) : Multicolinalidad severa
library(mctest)
eigprop(modelo_precio)
##
## Call:
## eigprop(mod = modelo_precio)
##
## Eigenvalues CI (Intercept) lotsize sqrft bdrms
## 1 3.4816 1.0000 0.0037 0.0278 0.0042 0.0029
## 2 0.4552 2.7656 0.0068 0.9671 0.0061 0.0051
## 3 0.0385 9.5082 0.4726 0.0051 0.8161 0.0169
## 4 0.0247 11.8678 0.5170 0.0000 0.1737 0.9750
##
## ===============================
## Row 2==> lotsize, proportion 0.967080 >= 0.50
## Row 3==> sqrft, proportion 0.816079 >= 0.50
## Row 4==> bdrms, proportion 0.975026 >= 0.50
library(printr)
mat.X<-model.matrix(modelo_precio)
head(mat.X,n=10)
| (Intercept) | lotsize | sqrft | bdrms |
|---|---|---|---|
| 1 | 6126 | 2438 | 4 |
| 1 | 9903 | 2076 | 3 |
| 1 | 5200 | 1374 | 3 |
| 1 | 4600 | 1448 | 3 |
| 1 | 6095 | 2514 | 4 |
| 1 | 8566 | 2754 | 5 |
| 1 | 9000 | 2067 | 3 |
| 1 | 6210 | 1731 | 3 |
| 1 | 6000 | 1767 | 3 |
| 1 | 2892 | 1890 | 3 |
m<-ncol(mat.X[,-1])
gl<-(m*(m-1))/2
library(psych)
FG.test<-cortest.bartlett(mat.X[,-1])
print(FG.test)
## $chisq
## [1] 31.38122
##
## $p.value
## [1] 0.0000007065806
##
## $df
## [1] 3
VC<-qchisq(p = 0.95,df = gl)
print(VC)
## [1] 7.814728
print(FG.test$chisq>VC)
## [1] TRUE
library(fastGraph)
shadeDist(FG.test$chisq,ddist = 'dchisq',col=c('black','darkgreen'),parm1 =VC,lower.tail = FALSE)
library(car)
VIFs<-vif(modelo_precio)
print(VIFs)
## lotsize sqrft bdrms
## 1.037211 1.418654 1.396663
library(mctest)
mc.plot(modelo_precio,vif=2)