Presente unas pequeñas instrucciones para graficar un valor crítico y un “p-value” para las distribuciones Z,T, F, chi^2 y algunos ejemplos gráficos.
library(wooldridge)
data(hprice1)
#Visualizacion de las primeras 5 observaciones
head(force(hprice1), n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
library(stargazer)
regresion_Precio<-lm(formula = price~assess+lotsize, data = hprice1)
stargazer(regresion_Precio, title = "Estimación Modelo Precios", type = "text")
##
## Estimación Modelo Precios
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## assess 0.956***
## (0.052)
##
## lotsize 0.001
## (0.0005)
##
## Constant -13.317
## (16.272)
##
## -----------------------------------------------
## Observations 88
## R2 0.822
## Adjusted R2 0.818
## Residual Std. Error 43.800 (df = 85)
## F Statistic 196.720*** (df = 2; 85)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
library(fastGraph)
shadeDist(qnorm(0.95), "dnorm", 0, 1, col = c("blue","lightblue"))
shadeDist(qnorm(0.95), lower.tail=FALSE, col = c("blue","lightblue"))
library(fastGraph)
#Matriz de Coeficientes desviación P-Value
coeficientes_Modelo<-summary(regresion_Precio)$coefficients
t_Value<-coeficientes_Modelo[,"t value"]
nombres<-names(t_Value)
for(t in 2:3)
{
t_critico<-t_Value[t]
#Valores Criticos
print(confint(regresion_Precio, parm = t,level = 0.90))
#Graficacion Distribucion T
t_Valor_Critico<- shadeDist( c(-t_critico, t_critico ), "dt", 13,col=c("blue","lightblue"),sub=paste("Parámetro de la Variable:",nombres[t]))
}
## 5 % 95 %
## assess 0.8689829 1.042448
## 5 % 95 %
## lotsize -0.0002461614 0.001378908
library(fastGraph)
F_Anova<-summary(regresion_Precio)$fstatistic[1]
grados_Libertad_num<-summary(regresion_Precio)$fstatistic[2]
grados_Libertad_denom<-summary(regresion_Precio)$fstatistic[3]
F_Valor_Critico<-qf(0.90,grados_Libertad_num,grados_Libertad_denom,lower.tail = TRUE)
#Graficación Prueba F
shadeDist(xshade = F_Anova,"df",grados_Libertad_num,grados_Libertad_denom,lower.tail = FALSE, col=c("blue","lightblue"), sub=paste("Valor Critico:",F_Valor_Critico," ","F Critico:",F_Anova))
library(fastGraph)
#Gráfica
shadeDist(qchisq(0.1,25,lower.tail = FALSE),ddist = 'dchisq',parm1 = 25,lower.tail = FALSE, col=c('blue','lightblue'))
shadeDist(23,ddist = 'dchisq',parm1 = 25,lower.tail = FALSE,col=c('blue','lightblue'),sub=paste(c(qchisq(0.1,25,lower.tail = FALSE))))