library(wooldridge)
data(hprice1)
head(force(hprice1), n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
modelo_estimado_colinealidad<-lm(formula = price~lotsize+sqrft+bdrms, data = hprice1)
library(stargazer)
stargazer(modelo_estimado_colinealidad, title = "Modelo Estimado Regresion Lineal",type="html", digits=5)
| Dependent variable: | |
| price | |
| lotsize | 0.00207*** |
| (0.00064) | |
| sqrft | 0.12278*** |
| (0.01324) | |
| bdrms | 13.85252 |
| (9.01015) | |
| Constant | -21.77031 |
| (29.47504) | |
| Observations | 88 |
| R2 | 0.67236 |
| Adjusted R2 | 0.66066 |
| Residual Std. Error | 59.83348 (df = 84) |
| F Statistic | 57.46023*** (df = 3; 84) |
| Note: | p<0.1; p<0.05; p<0.01 |
matrizX<-model.matrix(modelo_estimado_colinealidad)
print(matrizX)
## (Intercept) lotsize sqrft bdrms
## 1 1 6126 2438 4
## 2 1 9903 2076 3
## 3 1 5200 1374 3
## 4 1 4600 1448 3
## 5 1 6095 2514 4
## 6 1 8566 2754 5
## 7 1 9000 2067 3
## 8 1 6210 1731 3
## 9 1 6000 1767 3
## 10 1 2892 1890 3
## 11 1 6000 2336 4
## 12 1 7047 2634 5
## 13 1 12237 3375 3
## 14 1 6460 1899 3
## 15 1 6519 2312 3
## 16 1 3597 1760 4
## 17 1 5922 2000 4
## 18 1 7123 1774 3
## 19 1 5642 1376 3
## 20 1 8602 1835 4
## 21 1 5494 2048 3
## 22 1 7800 2124 3
## 23 1 6003 1768 3
## 24 1 5218 1732 4
## 25 1 9425 1440 3
## 26 1 6114 1932 3
## 27 1 6710 1932 3
## 28 1 8577 2106 3
## 29 1 8400 3529 7
## 30 1 9773 2051 4
## 31 1 4806 1573 4
## 32 1 15086 2829 4
## 33 1 5763 1630 3
## 34 1 6383 1840 4
## 35 1 9000 2066 4
## 36 1 3500 1702 4
## 37 1 10892 2750 4
## 38 1 15634 3880 5
## 39 1 6400 1854 4
## 40 1 8880 1421 2
## 41 1 6314 1662 3
## 42 1 28231 3331 5
## 43 1 7050 1656 4
## 44 1 5305 1171 3
## 45 1 6637 2293 5
## 46 1 7834 1764 3
## 47 1 1000 2768 3
## 48 1 8112 3733 4
## 49 1 5850 1536 3
## 50 1 6660 1638 4
## 51 1 6637 1972 3
## 52 1 15267 1478 2
## 53 1 5146 1408 3
## 54 1 6017 1812 3
## 55 1 8410 1722 3
## 56 1 5625 1780 4
## 57 1 5600 1674 4
## 58 1 6525 1850 4
## 59 1 6060 1925 3
## 60 1 5539 2343 4
## 61 1 7566 1567 3
## 62 1 5484 1664 4
## 63 1 5348 1386 6
## 64 1 15834 2617 5
## 65 1 8022 2321 4
## 66 1 11966 2638 4
## 67 1 8460 1915 4
## 68 1 15105 2589 4
## 69 1 10859 2709 4
## 70 1 6300 1587 3
## 71 1 11554 1694 3
## 72 1 6000 1536 3
## 73 1 31000 3662 5
## 74 1 4054 1736 3
## 75 1 20700 2205 2
## 76 1 5525 1502 3
## 77 1 92681 1696 4
## 78 1 8178 2186 3
## 79 1 5944 1928 4
## 80 1 18838 1294 3
## 81 1 4315 1535 4
## 82 1 5167 1980 3
## 83 1 7893 2090 4
## 84 1 6056 1837 3
## 85 1 5828 1715 3
## 86 1 6341 1574 3
## 87 1 6362 1185 2
## 88 1 4950 1774 4
## attr(,"assign")
## [1] 0 1 2 3
2.Indice de Condicion y Prueba de FG presentados tabularmeente
library(mctest)
eigprop(modelo_estimado_colinealidad)
##
## Call:
## eigprop(mod = modelo_estimado_colinealidad)
##
## Eigenvalues CI (Intercept) lotsize sqrft bdrms
## 1 3.4816 1.0000 0.0037 0.0278 0.0042 0.0029
## 2 0.4552 2.7656 0.0068 0.9671 0.0061 0.0051
## 3 0.0385 9.5082 0.4726 0.0051 0.8161 0.0169
## 4 0.0247 11.8678 0.5170 0.0000 0.1737 0.9750
##
## ===============================
## Row 2==> lotsize, proportion 0.967080 >= 0.50
## Row 3==> sqrft, proportion 0.816079 >= 0.50
## Row 4==> bdrms, proportion 0.975026 >= 0.50
library(psych)
FG.test<-cortest.bartlett(matrizX[,-1])
print(FG.test)
## $chisq
## [1] 31.38122
##
## $p.value
## [1] 7.065806e-07
##
## $df
## [1] 3
VC<-qchisq(p = 0.95,df = 6)
print(VC)
## [1] 12.59159
print(FG.test$chisq<VC)
## [1] FALSE
library(car)
VIFS_cardemodelo<-(modelo_estimado_colinealidad)
print(VIFS_cardemodelo)
##
## Call:
## lm(formula = price ~ lotsize + sqrft + bdrms, data = hprice1)
##
## Coefficients:
## (Intercept) lotsize sqrft bdrms
## -21.770308 0.002068 0.122778 13.852522