Identificar en una distribución normal, los valores de la curva o los valores de la función de densidad, graficar el área bajo la curva y calcular probabilidades.
Realizar distribuciones de probabilidad conforme a la distribución de probabilidad normal a partir de valores iniciales de los ejercicios identificando y visualizando la función de densidad y calculando probabilidades.
Pendiente.
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(mosaic)
## Warning: package 'mosaic' was built under R version 4.0.5
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
library(readr)
library(ggplot2) # Para gráficos
library(knitr) # Para formateo de datos
library(cowplot) #Imágenes en el mismo renglón
## Warning: package 'cowplot' was built under R version 4.0.5
##
## Attaching package: 'cowplot'
## The following object is masked from 'package:mosaic':
##
## theme_map
options(scipen=999) # Notación normal
datos <- read.table("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/body.dat.txt", quote="\"", comment.char="")
datos <- as.data.frame(datos)
colnames(datos)[23:25] <- c("peso", "estatura", "genero")
# Solo nos interesan las tres últimas columnas
datos <- select(datos, estatura, peso, genero)
head(datos)
## estatura peso genero
## 1 174.0 65.6 1
## 2 175.3 71.8 1
## 3 193.5 80.7 1
## 4 186.5 72.6 1
## 5 187.2 78.8 1
## 6 181.5 74.8 1
tail(datos)
## estatura peso genero
## 502 157.5 76.8 0
## 503 176.5 71.8 0
## 504 164.4 55.5 0
## 505 160.7 48.6 0
## 506 174.0 66.4 0
## 507 163.8 67.3 0
ggplot(datos, aes(x = 1:nrow(datos), y = peso)) +
geom_point(colour = "red")
ggplot(datos, aes(x = 1:nrow(datos), y = estatura)) +
geom_point(colour = "blue")
Histograma del peso
ggplot(datos) +
geom_histogram(aes(x = peso))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggplot(datos) +
geom_histogram(aes(x = estatura))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
datos$genero <- as.factor(datos$genero)
masculinos <- filter(datos, genero == 1)
femeninos <- filter(datos, genero == 0)
media.peso.m <- mean(masculinos$peso)
desv.std.peso.m <- sd(masculinos$peso)
media.peso.m
## [1] 78.14453
desv.std.peso.m
## [1] 10.51289
media.peso.f <- mean(femeninos$peso)
desv.std.peso.f <- sd(femeninos$peso)
media.peso.f
## [1] 60.60038
desv.std.peso.f
## [1] 9.615699
Se toman los valores mínimos y máximos de pesos, de esos valores se disminuye en diez a mínimo y aumenta en diez a máximo para contemplar mayor rango.
x <- round(min(masculinos$peso-10),0):round(max(masculinos$peso+10),0)
tabla.peso.masculino <- data.frame(x=x, prob.x = dnorm(x = x, mean = media.peso.m, sd = desv.std.peso.m), f.acum.x = pnorm(q = x, mean = media.peso.m, sd = desv.std.peso.m))
kable(tabla.peso.masculino, caption = "Peso Muestra Masculino")
| x | prob.x | f.acum.x |
|---|---|---|
| 44 | 0.0001943 | 0.0005814 |
| 45 | 0.0002635 | 0.0008087 |
| 46 | 0.0003540 | 0.0011155 |
| 47 | 0.0004714 | 0.0015257 |
| 48 | 0.0006220 | 0.0020694 |
| 49 | 0.0008134 | 0.0027834 |
| 50 | 0.0010541 | 0.0037126 |
| 51 | 0.0013536 | 0.0049111 |
| 52 | 0.0017227 | 0.0064430 |
| 53 | 0.0021726 | 0.0083834 |
| 54 | 0.0027153 | 0.0108191 |
| 55 | 0.0033630 | 0.0138490 |
| 56 | 0.0041277 | 0.0175841 |
| 57 | 0.0050206 | 0.0221471 |
| 58 | 0.0060518 | 0.0276714 |
| 59 | 0.0072290 | 0.0342994 |
| 60 | 0.0085574 | 0.0421798 |
| 61 | 0.0100387 | 0.0514651 |
| 62 | 0.0116703 | 0.0623073 |
| 63 | 0.0134449 | 0.0748534 |
| 64 | 0.0153498 | 0.0892405 |
| 65 | 0.0173668 | 0.1055903 |
| 66 | 0.0194718 | 0.1240034 |
| 67 | 0.0216353 | 0.1445535 |
| 68 | 0.0238227 | 0.1672820 |
| 69 | 0.0259950 | 0.1921939 |
| 70 | 0.0281098 | 0.2192529 |
| 71 | 0.0301230 | 0.2483797 |
| 72 | 0.0319895 | 0.2794500 |
| 73 | 0.0336657 | 0.3122952 |
| 74 | 0.0351107 | 0.3467043 |
| 75 | 0.0362878 | 0.3824272 |
| 76 | 0.0371665 | 0.4191803 |
| 77 | 0.0377237 | 0.4566529 |
| 78 | 0.0379443 | 0.4945154 |
| 79 | 0.0378225 | 0.5324273 |
| 80 | 0.0373615 | 0.5700472 |
| 81 | 0.0365736 | 0.6070412 |
| 82 | 0.0354799 | 0.6430924 |
| 83 | 0.0341089 | 0.6779085 |
| 84 | 0.0324955 | 0.7112293 |
| 85 | 0.0306796 | 0.7428320 |
| 86 | 0.0287042 | 0.7725353 |
| 87 | 0.0266142 | 0.8002022 |
| 88 | 0.0244540 | 0.8257403 |
| 89 | 0.0222668 | 0.8491012 |
| 90 | 0.0200926 | 0.8702783 |
| 91 | 0.0179674 | 0.8893028 |
| 92 | 0.0159223 | 0.9062398 |
| 93 | 0.0139828 | 0.9211827 |
| 94 | 0.0121690 | 0.9342474 |
| 95 | 0.0104951 | 0.9455673 |
| 96 | 0.0089699 | 0.9552872 |
| 97 | 0.0075973 | 0.9635580 |
| 98 | 0.0063768 | 0.9705325 |
| 99 | 0.0053041 | 0.9763609 |
| 100 | 0.0043722 | 0.9811877 |
| 101 | 0.0035715 | 0.9851490 |
| 102 | 0.0028912 | 0.9883708 |
| 103 | 0.0023194 | 0.9909675 |
| 104 | 0.0018439 | 0.9930416 |
| 105 | 0.0014527 | 0.9946834 |
| 106 | 0.0011342 | 0.9959712 |
| 107 | 0.0008775 | 0.9969723 |
| 108 | 0.0006728 | 0.9977436 |
| 109 | 0.0005112 | 0.9983323 |
| 110 | 0.0003850 | 0.9987778 |
| 111 | 0.0002873 | 0.9991117 |
| 112 | 0.0002124 | 0.9993599 |
| 113 | 0.0001557 | 0.9995426 |
| 114 | 0.0001130 | 0.9996759 |
| 115 | 0.0000814 | 0.9997723 |
| 116 | 0.0000580 | 0.9998414 |
| 117 | 0.0000410 | 0.9998905 |
| 118 | 0.0000287 | 0.9999250 |
| 119 | 0.0000199 | 0.9999491 |
| 120 | 0.0000137 | 0.9999657 |
| 121 | 0.0000093 | 0.9999771 |
| 122 | 0.0000063 | 0.9999849 |
| 123 | 0.0000042 | 0.9999901 |
| 124 | 0.0000028 | 0.9999936 |
| 125 | 0.0000018 | 0.9999958 |
| 126 | 0.0000012 | 0.9999973 |
x <- round(min(masculinos$peso-10),0):round(max(masculinos$peso+10),0)
tabla.peso.femenino <- data.frame(x=x, prob.x = dnorm(x = x, mean = media.peso.f, sd = desv.std.peso.f), f.acum.x = pnorm(q = x, mean = media.peso.f, sd = desv.std.peso.f))
kable(tabla.peso.femenino, caption = "Peso Muestra Femenino")
| x | prob.x | f.acum.x |
|---|---|---|
| 44 | 0.0093485 | 0.0421392 |
| 45 | 0.0111267 | 0.0523603 |
| 46 | 0.0131007 | 0.0644580 |
| 47 | 0.0152589 | 0.0786232 |
| 48 | 0.0175815 | 0.0950307 |
| 49 | 0.0200398 | 0.1138315 |
| 50 | 0.0225960 | 0.1351430 |
| 51 | 0.0252042 | 0.1590409 |
| 52 | 0.0278111 | 0.1855511 |
| 53 | 0.0303575 | 0.2146430 |
| 54 | 0.0327805 | 0.2462249 |
| 55 | 0.0350163 | 0.2801416 |
| 56 | 0.0370021 | 0.3161741 |
| 57 | 0.0386800 | 0.3540430 |
| 58 | 0.0399989 | 0.3934143 |
| 59 | 0.0409180 | 0.4339075 |
| 60 | 0.0414078 | 0.4751070 |
| 61 | 0.0414528 | 0.5165747 |
| 62 | 0.0410515 | 0.5578638 |
| 63 | 0.0402167 | 0.5985330 |
| 64 | 0.0389750 | 0.6381613 |
| 65 | 0.0373654 | 0.6763603 |
| 66 | 0.0354370 | 0.7127858 |
| 67 | 0.0332465 | 0.7471469 |
| 68 | 0.0308559 | 0.7792121 |
| 69 | 0.0283291 | 0.8088133 |
| 70 | 0.0257295 | 0.8358461 |
| 71 | 0.0231171 | 0.8602681 |
| 72 | 0.0205465 | 0.8820943 |
| 73 | 0.0180653 | 0.9013909 |
| 74 | 0.0157128 | 0.9182679 |
| 75 | 0.0135197 | 0.9328698 |
| 76 | 0.0115076 | 0.9453677 |
| 77 | 0.0096895 | 0.9559498 |
| 78 | 0.0080710 | 0.9648134 |
| 79 | 0.0066504 | 0.9721578 |
| 80 | 0.0054210 | 0.9781780 |
| 81 | 0.0043713 | 0.9830597 |
| 82 | 0.0034869 | 0.9869757 |
| 83 | 0.0027516 | 0.9900833 |
| 84 | 0.0021479 | 0.9925228 |
| 85 | 0.0016587 | 0.9944173 |
| 86 | 0.0012671 | 0.9958727 |
| 87 | 0.0009575 | 0.9969788 |
| 88 | 0.0007158 | 0.9978104 |
| 89 | 0.0005294 | 0.9984289 |
| 90 | 0.0003873 | 0.9988839 |
| 91 | 0.0002803 | 0.9992151 |
| 92 | 0.0002007 | 0.9994536 |
| 93 | 0.0001421 | 0.9996234 |
| 94 | 0.0000996 | 0.9997431 |
| 95 | 0.0000690 | 0.9998265 |
| 96 | 0.0000473 | 0.9998840 |
| 97 | 0.0000321 | 0.9999233 |
| 98 | 0.0000215 | 0.9999498 |
| 99 | 0.0000143 | 0.9999674 |
| 100 | 0.0000094 | 0.9999791 |
| 101 | 0.0000061 | 0.9999867 |
| 102 | 0.0000039 | 0.9999917 |
| 103 | 0.0000025 | 0.9999948 |
| 104 | 0.0000016 | 0.9999968 |
| 105 | 0.0000010 | 0.9999981 |
| 106 | 0.0000006 | 0.9999988 |
| 107 | 0.0000004 | 0.9999993 |
| 108 | 0.0000002 | 0.9999996 |
| 109 | 0.0000001 | 0.9999998 |
| 110 | 0.0000001 | 0.9999999 |
| 111 | 0.0000000 | 0.9999999 |
| 112 | 0.0000000 | 1.0000000 |
| 113 | 0.0000000 | 1.0000000 |
| 114 | 0.0000000 | 1.0000000 |
| 115 | 0.0000000 | 1.0000000 |
| 116 | 0.0000000 | 1.0000000 |
| 117 | 0.0000000 | 1.0000000 |
| 118 | 0.0000000 | 1.0000000 |
| 119 | 0.0000000 | 1.0000000 |
| 120 | 0.0000000 | 1.0000000 |
| 121 | 0.0000000 | 1.0000000 |
| 122 | 0.0000000 | 1.0000000 |
| 123 | 0.0000000 | 1.0000000 |
| 124 | 0.0000000 | 1.0000000 |
| 125 | 0.0000000 | 1.0000000 |
| 126 | 0.0000000 | 1.0000000 |
g1 <- ggplot(data = tabla.peso.masculino, aes(x,prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Pesos MASCULINO Densidad P(x)", subtitle = paste("media = ",media.peso.m, "desv=", desv.std.peso.m )) +
geom_vline(xintercept = media.peso.m, colour="red")
#g1
g2 <- ggplot(data = tabla.peso.femenino, aes(x,prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("PESO FEMENINO. Densidad P(x)", subtitle = paste("media = ",media.peso.f, "desv=", desv.std.peso.f )) +
geom_vline(xintercept = media.peso.f, colour="red")
#g2
plot_grid(g1, g2)
media.estatura.m <- mean(masculinos$estatura)
desv.std.estatura.m <- sd(masculinos$estatura)
media.estatura.m
## [1] 177.7453
desv.std.estatura.m
## [1] 7.183629
media.estatura.f <- mean(femeninos$estatura)
desv.std.estatura.f <- sd(femeninos$estatura)
media.estatura.f
## [1] 164.8723
desv.std.estatura.f
## [1] 6.544602
Se toman los valores mínimos y máximos de estaturas, de esos valores se disminuye en diez a mínimo y aumenta en diez a máximo para contemplar mayor rango.
x <- round(min(masculinos$estatura-10),0):round(max(masculinos$estatura+10),0)
tabla.estatura.masculino <- data.frame(x=x, prob.x = dnorm(x = x, mean = media.estatura.m, sd = desv.std.estatura.m), f.acum.x = pnorm(q = x, mean = media.estatura.m, sd = desv.std.estatura.m))
kable(tabla.estatura.masculino, caption = "Estatura Muestra Masculino")
| x | prob.x | f.acum.x |
|---|---|---|
| 147 | 0.0000058 | 0.0000093 |
| 148 | 0.0000105 | 0.0000173 |
| 149 | 0.0000185 | 0.0000315 |
| 150 | 0.0000320 | 0.0000562 |
| 151 | 0.0000543 | 0.0000984 |
| 152 | 0.0000903 | 0.0001693 |
| 153 | 0.0001472 | 0.0002859 |
| 154 | 0.0002355 | 0.0004741 |
| 155 | 0.0003695 | 0.0007720 |
| 156 | 0.0005686 | 0.0012347 |
| 157 | 0.0008582 | 0.0019393 |
| 158 | 0.0012705 | 0.0029920 |
| 159 | 0.0018448 | 0.0045344 |
| 160 | 0.0026273 | 0.0067510 |
| 161 | 0.0036698 | 0.0098756 |
| 162 | 0.0050276 | 0.0141956 |
| 163 | 0.0067555 | 0.0200542 |
| 164 | 0.0089032 | 0.0278467 |
| 165 | 0.0115085 | 0.0380133 |
| 166 | 0.0145906 | 0.0510229 |
| 167 | 0.0181431 | 0.0673516 |
| 168 | 0.0221276 | 0.0874534 |
| 169 | 0.0264692 | 0.1117262 |
| 170 | 0.0310550 | 0.1404736 |
| 171 | 0.0357361 | 0.1738683 |
| 172 | 0.0403336 | 0.2119183 |
| 173 | 0.0446489 | 0.2544416 |
| 174 | 0.0484774 | 0.3010538 |
| 175 | 0.0516240 | 0.3511688 |
| 176 | 0.0539198 | 0.4040177 |
| 177 | 0.0552368 | 0.4586815 |
| 178 | 0.0555000 | 0.5141393 |
| 179 | 0.0546943 | 0.5693246 |
| 180 | 0.0528659 | 0.6231864 |
| 181 | 0.0501179 | 0.6747493 |
| 182 | 0.0466009 | 0.7231655 |
| 183 | 0.0424991 | 0.7677559 |
| 184 | 0.0380145 | 0.8080361 |
| 185 | 0.0333506 | 0.8437254 |
| 186 | 0.0286974 | 0.8747411 |
| 187 | 0.0242194 | 0.9011789 |
| 188 | 0.0200480 | 0.9232826 |
| 189 | 0.0162765 | 0.9414086 |
| 190 | 0.0129609 | 0.9559880 |
| 191 | 0.0101227 | 0.9674899 |
| 192 | 0.0077542 | 0.9763902 |
| 193 | 0.0058259 | 0.9831453 |
| 194 | 0.0042932 | 0.9881740 |
| 195 | 0.0031029 | 0.9918458 |
| 196 | 0.0021997 | 0.9944755 |
| 197 | 0.0015294 | 0.9963228 |
| 198 | 0.0010430 | 0.9975955 |
| 199 | 0.0006976 | 0.9984556 |
| 200 | 0.0004576 | 0.9990257 |
| 201 | 0.0002945 | 0.9993964 |
| 202 | 0.0001858 | 0.9996328 |
| 203 | 0.0001150 | 0.9997806 |
| 204 | 0.0000698 | 0.9998713 |
| 205 | 0.0000416 | 0.9999259 |
| 206 | 0.0000243 | 0.9999581 |
| 207 | 0.0000139 | 0.9999767 |
| 208 | 0.0000078 | 0.9999873 |
x <- round(min(femeninos$estatura-10),0):round(max(femeninos$estatura+10),0)
tabla.estatura.femenino <- data.frame(x=x, prob.x = dnorm(x = x, mean = media.estatura.f, sd = desv.std.estatura.f), f.acum.x = pnorm(q = x, mean = media.estatura.f, sd = desv.std.estatura.f))
kable(tabla.estatura.femenino, caption = "Estatura Muestra Femenino")
| x | prob.x | f.acum.x |
|---|---|---|
| 137 | 0.0000070 | 0.0000103 |
| 138 | 0.0000133 | 0.0000201 |
| 139 | 0.0000246 | 0.0000386 |
| 140 | 0.0000445 | 0.0000722 |
| 141 | 0.0000787 | 0.0001323 |
| 142 | 0.0001358 | 0.0002372 |
| 143 | 0.0002289 | 0.0004158 |
| 144 | 0.0003770 | 0.0007132 |
| 145 | 0.0006066 | 0.0011969 |
| 146 | 0.0009536 | 0.0019655 |
| 147 | 0.0014644 | 0.0031586 |
| 148 | 0.0021968 | 0.0049680 |
| 149 | 0.0032196 | 0.0076489 |
| 150 | 0.0046097 | 0.0115295 |
| 151 | 0.0064476 | 0.0170175 |
| 152 | 0.0088102 | 0.0245998 |
| 153 | 0.0117607 | 0.0348342 |
| 154 | 0.0153372 | 0.0483303 |
| 155 | 0.0195396 | 0.0657177 |
| 156 | 0.0243190 | 0.0876024 |
| 157 | 0.0295690 | 0.1145133 |
| 158 | 0.0351228 | 0.1468424 |
| 159 | 0.0407569 | 0.1847861 |
| 160 | 0.0462034 | 0.2282939 |
| 161 | 0.0511690 | 0.2770326 |
| 162 | 0.0553606 | 0.3303735 |
| 163 | 0.0585133 | 0.3874068 |
| 164 | 0.0604184 | 0.4469834 |
| 165 | 0.0609459 | 0.5077833 |
| 166 | 0.0600592 | 0.5684026 |
| 167 | 0.0578197 | 0.6274497 |
| 168 | 0.0543791 | 0.6836408 |
| 169 | 0.0499631 | 0.7358822 |
| 170 | 0.0448463 | 0.7833331 |
| 171 | 0.0393246 | 0.8254399 |
| 172 | 0.0336870 | 0.8619440 |
| 173 | 0.0281917 | 0.8928619 |
| 174 | 0.0230484 | 0.9184454 |
| 175 | 0.0184086 | 0.9391272 |
| 176 | 0.0143635 | 0.9554614 |
| 177 | 0.0109487 | 0.9680648 |
| 178 | 0.0081531 | 0.9775655 |
| 179 | 0.0059312 | 0.9845624 |
| 180 | 0.0042153 | 0.9895967 |
| 181 | 0.0029266 | 0.9931354 |
| 182 | 0.0019851 | 0.9955656 |
| 183 | 0.0013153 | 0.9971961 |
| 184 | 0.0008514 | 0.9982648 |
| 185 | 0.0005384 | 0.9989491 |
| 186 | 0.0003327 | 0.9993773 |
| 187 | 0.0002008 | 0.9996390 |
| 188 | 0.0001184 | 0.9997952 |
| 189 | 0.0000682 | 0.9998864 |
| 190 | 0.0000384 | 0.9999383 |
| 191 | 0.0000211 | 0.9999673 |
| 192 | 0.0000113 | 0.9999830 |
| 193 | 0.0000059 | 0.9999914 |
g1 <- ggplot(data = tabla.estatura.masculino, aes(x,prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("ESTATURAS MASCULINO Densidad P(x)", subtitle = paste("media = ",media.estatura.m, "desv=", desv.std.estatura.m ))+
geom_vline(xintercept = media.estatura.m, colour="red")
#g1
g2 <- ggplot(data = tabla.estatura.femenino, aes(x,prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("ESTATURAS FEMENINO. Densidad P(x)", subtitle = paste("media = ",media.estatura.f, "desv=", desv.std.estatura.f )) +
geom_vline(xintercept = media.estatura.f, colour="red")
#g2
plot_grid(g1, g2)
¿Cuál es la probabilidad de encontrar a una persona masculino que pese menor o igual de 60 kilogramos?
Graficar la función en donde \(P(x≤60)\)
Gráfica de densidad
plotDist("norm", mean = media.peso.m, sd = desv.std.peso.m, groups = x <= 60, type = "h", xlab = "Peso Hombres", ylab = "Densidad" )
prob <- pnorm(q = 60, mean = media.peso.m, sd = desv.std.peso.m)
paste("La probabilidad de encontrar a una persona masculino que pese menor de 60 kilogramos es de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino que pese menor de 60 kilogramos es de: 4.218 %"
¿Cuál es la probabilidad de encontrar a una persona femenino que pese menor o igual de 50 kilogramos?
Graficar la función en donde \(P(x≤50)\)
Gráfica de densidad
plotDist("norm", mean = media.peso.f, sd = desv.std.peso.f, groups = x <= 50, type = "h", xlab = "Peso Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 50, mean = media.peso.f, sd = desv.std.peso.f)
paste("La probabilidad de encontrar a una persona femenino que pese menor de 50 kilogramos es de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona femenino que pese menor de 50 kilogramos es de: 13.5143 %"
¿Cuál es la probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 180 centímetros?
Graficar la función en donde \(P(x>=180)\)
Gráfica de densidad
plotDist("norm", mean = media.estatura.m, sd = desv.std.estatura.m, groups = x >= 180, type = "h", xlab = "Estatura Hombres", ylab = "Densidad" )
prob <- pnorm(q = 180, mean = media.estatura.m, sd = desv.std.estatura.m, lower.tail = FALSE)
paste("La probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 180 de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 180 de: 37.6814 %"
¿Cuál es la probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 190 centímetros?
Graficar la función en donde \(x>=190\)
Gráfica de densidad
plotDist("norm", mean = media.estatura.m, sd = desv.std.estatura.m, groups = x >= 190, type = "h", xlab = "Estatura Hombres", ylab = "Densidad" )
prob <- pnorm(q = 190, mean = media.estatura.m, sd = desv.std.estatura.m, lower.tail = FALSE)
paste("La probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 190 de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 190 de: 4.4012 %"
¿Cuál es la probabilidad de encontrar a una persona masculino que tenga una estatura entre 160 y 170 centímetros?
Graficar la función en donde \(P(160≤x≤170)\)
Gráfica de densidad
plotDist("norm", mean = media.estatura.m, sd = desv.std.estatura.m, groups = x >= 160 & x <= 170, type = "h", xlab = "Estatura Hombres", ylab = "Densidad" )
plotDist("norm", mean = media.estatura.m, sd = desv.std.estatura.m, groups = x >= 190 & x <= 195, type = "h", xlab = "Estatura Hombres", ylab = "Densidad" )
prob <- pnorm(q = 195, mean = media.estatura.m, sd = desv.std.estatura.m) - pnorm(q = 190, mean = media.estatura.m, sd = desv.std.estatura.m)
paste("La probabilidad de encontrar a una persona masculino que tenga una estatura entre 190 y 195 centímeros es de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino que tenga una estatura entre 190 y 195 centímeros es de: 3.5858 %"
¿Cuál es la probabilidad de encontrar a una persona masculino que tenga una estatura entre 190 y 195 centímetros?
plotDist("norm", mean = media.estatura.m, sd = desv.std.estatura.m, groups = x >= 190 & x <= 195, type = "h", xlab = "Estatura Hombres", ylab = "Densidad" )
prob <- pnorm(q = 195, mean = media.estatura.m, sd = desv.std.estatura.m) - pnorm(q = 190, mean = media.estatura.m, sd = desv.std.estatura.m)
paste("La probabilidad de encontrar a una persona masculino que tenga una estatura entre 190 y 195 centímeros es de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino que tenga una estatura entre 190 y 195 centímeros es de: 3.5858 %"
¿Cuál es la probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 180 centímetros?
Graficar la función en donde \(P(x>=180)\)
Gráfica de densidad
plotDist("norm", mean = media.estatura.f, sd = desv.std.estatura.f, groups = x >= 180, type = "h", xlab = "Estatura Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 180, mean = media.estatura.f, sd = desv.std.estatura.f, lower.tail = FALSE)
paste("La probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 180 de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 180 de: 1.0403 %"
¿Cuál es la probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 190 centímetros?
Graficar la función en donde \(P(x>=190)\)
Gráfica de densidad
plotDist("norm", mean = media.estatura.f, sd = desv.std.estatura.f, groups = x >= 190, type = "h", xlab = "Estatura Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 190, mean = media.estatura.f, sd = desv.std.estatura.f, lower.tail = FALSE)
paste("La probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 190 de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 190 de: 0.0062 %"
¿Cuál es la probabilidad de encontrar a una persona femenino que tenga una estatura entre 160 y 170 centímetros?
Graficar la función en donde \(P(160≤x≤170)\)
Gráfica de densidad
plotDist("norm", mean = media.estatura.f, sd = desv.std.estatura.f, groups = x >= 160 & x <= 170, type = "h", xlab = "Estatura Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 170, mean = media.estatura.f, sd = desv.std.estatura.f) - pnorm(q = 160, mean = media.estatura.f, sd = desv.std.estatura.f)
paste("La probabilidad de encontrar a una persona femenino que tenga una estatura entre 160 y 170 centímeros de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona femenino que tenga una estatura entre 160 y 170 centímeros de: 55.5039 %"
¿Cuál es la probabilidad de encontrar a una persona femenino que tenga una estatura entre 190 y 195 centímetros?
Graficar la función en donde \(P(190≤x≤195)\)
Gráfica de densidad
plotDist("norm", mean = media.estatura.f, sd = desv.std.estatura.f, groups = x >= 190 & x <= 195, type = "h", xlab = "Estatura Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 195, mean = media.estatura.f, sd = desv.std.estatura.f) - pnorm(q = 190, mean = media.estatura.f, sd = desv.std.estatura.f)
paste("La probabilidad de encontrar a una persona femenino que tenga una estatura entre 190 y 195 centímeros es de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona femenino que tenga una estatura entre 190 y 195 centímeros es de: 0.006 %"
¿Cuál es la probabilidad de encontrar a una persona masculino o femenino que tenga una estatura entre 160 y 170 centímetros?
Graficar la función en donde \(P(160≤x≤170)\)
Gráfica de densidad
plotDist("norm", mean = mean(datos$estatura), sd = sd(datos$estatura), groups = x >= 160 & x <= 170, type = "h", xlab = "Estatura Hombres y Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 170, mean = mean(datos$estatura), sd = sd(datos$estatura)) - pnorm(q = 160, mean = mean(datos$estatura), sd = sd(datos$estatura))
paste("La probabilidad de encontrar a una persona masculino o femenino que tenga una estatura entre 160 y 170 centímetros? es de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino o femenino que tenga una estatura entre 160 y 170 centímetros? es de: 33.3526 %"
En este ejercicio consideramos la altura y el peso de una persona, tenemos que averiguar la probabilidad de que el peso de una determinada persona alcance unos kilogramos o ciertos centímetros en una población de 507 hombres o mujeres; MASCULINO es menor o igual a 60 kg (4.218%), FEMENINO es menor o igual a 50 kg (13.5143%), y MASCULINO es mayor o igual a 180 cm (37.6814%) En base a la teoría, en sí mismo ayuda a practicar en estos temas. Es importante El resultado no es el resultado, sino la forma en que se representa en el gráfico como una parte de un solo color en toda la representación del gráfico.
Una empresa de material eléctrico fabrica bombillas (focos) de luz que tienen una duración, antes de quemarse (fundirse), que se distribuye normalmente con media igual a 800 horas y una desviación estándar de 40 horas. Encuentre la probabilidad de que una bombilla se queme entre 778 y 834 horas. (walpole_probabilidad_2012?)].
\[\mu = 800\]
\[\sigma=40\]
\[P(778 \leq x \leq 834)\]
media <- 800
desv.stadandar <- 40
plotDist("norm", mean = media, sd = desv.stadandar, groups = x >= 778 & x <= 834, type = "h", xlab = "Distribución de la duración bombillas (focos)", ylab = "Densidad" )
prob <- pnorm(q = 834, mean = media, sd = desv.stadandar) - pnorm(q = 778, mean = media, sd = desv.stadandar)
paste("La probabilidad de que una bombilla se queme entre 778 y 834 horas es:", round(prob * 100, 4), "%")
## [1] "La probabilidad de que una bombilla se queme entre 778 y 834 horas es: 51.1178 %"
Dado que la probabilidad de el área bajo la curva de una distribución normal es del 100% y solicitan la probabilidad en el intervalo entre 778 y 834, entonces se resta la probabilidad de 834 menos la probabilidad de 778 para encontrar el área bajo la curva de este intervalo de esa variable aleatoria. En la gráfica el color rosa es el área bajo la curva del intérvalo.
La probabilidad de que un foco se funda en un rango entre 778 horas y 834 horas es de 51.1178 %
Los sueldos mensuales en una empresa siguen una distribución normal con media de 1200 soles, y desviación estándar de 200 soles.
¿Qué porcentaje de trabajadores ganan entre 1000 y 1550 soles?(matemovil, n.d.).
\[\mu = 1200\]
\[\sigma=200\]
\[1000≤x≤1550\]
media <- 1200
desv.stadandar <- 200
plotDist("norm", mean = media, sd = desv.stadandar, groups = x >= 1000 & x <= 1550, type = "h", xlab = "Ganancias de trabajadores en soles", ylab = "Densidad" )
prob <- pnorm(q = 1550, mean = media, sd = desv.stadandar) - pnorm(q = 1000, mean = media, sd = desv.stadandar)
paste("La probabilidad de que una persoan gane entre 1000 y 1550 soles es de:", round(prob * 100, 4), "%")
## [1] "La probabilidad de que una persoan gane entre 1000 y 1550 soles es de: 80.1286 %"
La probabilidad de que una persona gane entre 1000 y 1550 soles es de:“, 80.1286,”%" que es el porcentaje de trabajadores que ganan en ese intérvalo.
En una distribución normal \(N(μ=5,σ=2)\) calcula las siguientes probabilidades:
Inicializar valores de media y desviación [anónimo]
media <- 5
desv <- 2
plotDist("norm", mean = media, sd = desv, groups = x <= 3.25, type = "h", xlab = "Contexto indistinto", ylab = "Densidad" )
x = 3.25
pnorm(q = x, mean = media, sd= desv)
## [1] 0.190787
plotDist("norm", mean = media, sd = desv, groups = x <= 4.5, type = "h", xlab = "Contexto indistinto", ylab = "Densidad" )
x <- 4.5
pnorm(q = x, mean = media, sd= desv, lower.tail = FALSE)
## [1] 0.5987063
plotDist("norm", mean = media, sd = desv, groups = x <= 7.2, type = "h", xlab = "Contexto indistinto", ylab = "Densidad" )
x <- 7.2
pnorm(q = x, mean = media, sd= desv)
## [1] 0.8643339
plotDist("norm", mean = media, sd = desv, groups = x >= 3 & x<= 6 , type = "h", xlab = "Contexto indistinto", ylab = "Densidad" )
x1 <- 6
x2 <- 3
pnorm(q = x1, mean = media, sd = desv) - pnorm(q = x2, mean = media, sd = desv)
## [1] 0.5328072
El caso es que el ejercicio no muestra situaciones o métodos relacionados con hechos o situaciones de la vida diaria. En general, puedes hacer un buen uso de este ejercicio para introducir el tema y seguir enseñando el caso. Ocurre que este tipo de ejercicio sin una situación específica es algo agradable para mí, porque en algunos problemas, cuesta por algún tiempo , estos problemas están relacionados con problemas de la vida diaria, o están lejos de las meras declaraciones y cifras que da el problema en sí.
Es difícil etiquetar la carne empaquetada con su peso correcto debido a los efectos de pérdida de líquido (definido como porcentaje del peso original de la carne). Supongamos que la pérdida de líquido en un paquete de pechuga de pollo se distribuye como normal con media 4 y desviación típica 1. (UC3M, n.d.).
media <- 0.04
desv <- 0.01
¿Cuál es la probabilidad de que de que esté entre 3 y 5 porciento?
plotDist("norm", mean = media, sd = desv, groups = x >= 0.03 & x <= 0.05, type = "h", xlab = "Carne empaquetada", ylab = "Densidad" )
\(P(3\)
pnorm(q = 0.05, mean = media, sd = desv) - pnorm(q = 0.03, mean = media, sd = desv)
## [1] 0.6826895
En esta pregunta, en base al hecho de que nos enfrentamos a la posibilidad de que en base a que en base a que es difícil marcar la carne por pérdida de líquido (afectando el peso final), se determine que un determinado porcentaje del empaque pierde líquido. , y por lo tanto, se requiere restar el peso del 3% al 5% del empaque (con una probabilidad del 68.26%), más esta probabilidad, veremos una gráfica de este problema, sospechamos que la mayoría de ellos son casi un 70% sombreado, como resultado de dicho planteamiento.
matemovil. n.d. “Probabilidad Condicional, Ejercicios Resueltos.” https://matemovil.com/probabilidad-condicional-ejercicios-resueltos/.
UC3M. n.d. “Introducción a La Estadística y Probabilidad.” http://halweb.uc3m.es/esp/Personal/personas/mwiper/docencia/Spanish/Introduction_to_Statistics/intro_continuous2.pdf.
Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012a. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.
———. 2012b. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.