library(wooldridge)
library(printr)
data(hprice1)
head(force(hprice1),n=5)
| price | assess | bdrms | lotsize | sqrft | colonial | lprice | lassess | llotsize | lsqrft |
|---|---|---|---|---|---|---|---|---|---|
| 300 | 349.1 | 4 | 6126 | 2438 | 1 | 5.703783 | 5.855359 | 8.720297 | 7.798934 |
| 370 | 351.5 | 3 | 9903 | 2076 | 1 | 5.913503 | 5.862210 | 9.200593 | 7.638198 |
| 191 | 217.7 | 3 | 5200 | 1374 | 0 | 5.252274 | 5.383118 | 8.556414 | 7.225481 |
| 195 | 231.8 | 3 | 4600 | 1448 | 1 | 5.273000 | 5.445875 | 8.433811 | 7.277938 |
| 373 | 319.1 | 4 | 6095 | 2514 | 1 | 5.921578 | 5.765504 | 8.715224 | 7.829630 |
modelo_precio<-lm(formula = price~lotsize+sqrft+bdrms,data = hprice1)
library(stargazer)
stargazer(modelo_precio,title="Modelo Precio",type = "html", digits=4)
| Dependent variable: | |
| price | |
| lotsize | 0.0021*** |
| (0.0006) | |
| sqrft | 0.1228*** |
| (0.0132) | |
| bdrms | 13.8525 |
| (9.0101) | |
| Constant | -21.7703 |
| (29.4750) | |
| Observations | 88 |
| R2 | 0.6724 |
| Adjusted R2 | 0.6607 |
| Residual Std. Error | 59.8335 (df = 84) |
| F Statistic | 57.4602*** (df = 3; 84) |
| Note: | p<0.1; p<0.05; p<0.01 |
Valores criticos \(\chi^2\) para \(\alpha=0.01\) , \(\alpha=0.05\), y \(\alpha=0.10\) respectivamente
## [1] 9.21034
## [1] 5.991465
## [1] 4.60517
\(H_0: \varepsilon \sim N(0,\sigma^2)\)
\(H_A: \varepsilon \nsim N(0,\sigma^2)\)
library(normtest)
jb.norm.test(modelo_precio$residuals)
##
## Jarque-Bera test for normality
##
## data: modelo_precio$residuals
## JB = 32.278, p-value = 0.0025
qqnorm(modelo_precio$residuals)
qqline(modelo_precio$residuals)
library(fastGraph)
shadeDist(32.278,ddist = 'dchisq',col=c('black','blue'),parm1 = qchisq(0.01,2,lower.tail = FALSE),lower.tail = FALSE)
\(H_0: \varepsilon \sim N(0,\sigma^2)\)
\(H_A: \varepsilon \nsim N(0,\sigma^2)\)
library(nortest)
lillie.test(modelo_precio$residuals)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: modelo_precio$residuals
## D = 0.075439, p-value = 0.2496
qqnorm(modelo_precio$residuals)
qqline(modelo_precio$residuals)
hist(modelo_precio$residuals,main = "Histograma de los residuos",xlab = "Residuos",ylab = "frecuencia")
\(H_0: \varepsilon \sim N(0,\sigma^2)\)
\(H_A: \varepsilon \nsim N(0,\sigma^2)\)
shapiro.test(modelo_precio$residuals)
##
## Shapiro-Wilk normality test
##
## data: modelo_precio$residuals
## W = 0.94132, p-value = 0.0005937
qqnorm(modelo_precio$residuals)
qqline(modelo_precio$residuals)
shadeDist(0.94132,parm1 = 0,ddist ="dnorm",col=c('black','green'),lower.tail = F)