Identificar en una distribución normal, los valores de la curva o los valores de la función de densidad, graficar el área bajo la curva y calcular probabilidades.
Realizar distribuciones de probabilidad conforme a la distribución de probabilidad normal a partir de valores iniciales de los ejercicios identificando y visualizando la función de densidad y calculando probabilidades.
La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. Su gráfica, que se denomina curva normal, es la curva con forma de campana (Walpole, Myers, and Myers 2012a).
La distribución normal a menudo se denomina distribución Gaussiana, en honor de Karl Friedrich Gauss (1777-1855), quien también derivó su ecuación a partir de un estudio de errores en mediciones repetidas de la misma cantidad (Walpole, Myers, and Myers 2012b).
$$ f(X)=e{(x-){2}}
$$
e=constante matematica con valor aproximado de 2.71828
\(\pi\) = constante matematica con valor aproximado de 3.14159
\(\mu\) = media de la poblacion
\(\sigma\)=desviacion estandard de la poblacion
Ejemplo de calcular la densidad para un valor de xx de acuerdo a la distribución normal con media y desviación.
Valor de \(x=18\); \(media 20\); \(desv=2\);\(e=2.71828\); \(\pi = 3.14159\)
x= 18
media <- 20
desv <- 2
e <- exp(1)
pi <- pi
x; media; desv; e; pi
## [1] 18
## [1] 20
## [1] 2
## [1] 2.718282
## [1] 3.141593
1 / (desv* sqrt(2 * pi)) * (e ^(-(x-media)^2 / (2*desv^2)))
## [1] 0.1209854
dnorm(x = x, mean = media, sd = desv)
## [1] 0.1209854
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(mosaic)
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
library(readr)
library(ggplot2) # Para gráficos
library(knitr) # Para formateo de datos
library(cowplot) #Imágenes en el mismo renglón
##
## Attaching package: 'cowplot'
## The following object is masked from 'package:mosaic':
##
## theme_map
options(scipen=999) # Notación normal
datos <- read.table("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/body.dat.txt", quote="\"", comment.char="")
datos <- as.data.frame(datos)
colnames(datos)[23:25] <- c("peso", "estatura", "genero")
# Solo nos interesan las tres últimas columnas
datos <- select(datos, estatura, peso, genero)
Ver los primeros seis y últimos seis registros
head(datos)
## estatura peso genero
## 1 174.0 65.6 1
## 2 175.3 71.8 1
## 3 193.5 80.7 1
## 4 186.5 72.6 1
## 5 187.2 78.8 1
## 6 181.5 74.8 1
tail(datos)
## estatura peso genero
## 502 157.5 76.8 0
## 503 176.5 71.8 0
## 504 164.4 55.5 0
## 505 160.7 48.6 0
## 506 174.0 66.4 0
## 507 163.8 67.3 0
Diagrama de dispersión del peso
ggplot(datos, aes(x = 1:nrow(datos), y = peso)) +
geom_point(colour = "red")
ggplot(datos, aes(x = 1:nrow(datos), y = estatura)) +
geom_point(colour = "blue")
Histograma del peso
ggplot(datos) +
geom_histogram(aes(x = peso))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Histograma de la estatura
ggplot(datos) +
geom_histogram(aes(x = estatura))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
datos$genero <- as.factor(datos$genero)
masculinos <- filter(datos, genero == 1)
femeninos <- filter(datos, genero == 0)
media.peso.m <- mean(masculinos$peso)
desv.std.peso.m <- sd(masculinos$peso)
media.peso.m
## [1] 78.14453
desv.std.peso.m
## [1] 10.51289
media.peso.f <- mean(femeninos$peso)
desv.std.peso.f <- sd(femeninos$peso)
media.peso.f
## [1] 60.60038
desv.std.peso.f
## [1] 9.615699
Se toman los valores mínimos y máximos de pesos, de esos valores se disminuye en diez a mínimo y aumenta en diez a máximo para contemplar mayor rango.
x <- round(min(masculinos$peso-10),0):round(max(masculinos$peso+10),0)
tabla.peso.masculino <- data.frame(x=x, prob.x = dnorm(x = x, mean = media.peso.m, sd = desv.std.peso.m), f.acum.x = pnorm(q = x, mean = media.peso.m, sd = desv.std.peso.m))
kable(tabla.peso.masculino, caption = "Peso Muestra Masculino")
| x | prob.x | f.acum.x |
|---|---|---|
| 44 | 0.0001943 | 0.0005814 |
| 45 | 0.0002635 | 0.0008087 |
| 46 | 0.0003540 | 0.0011155 |
| 47 | 0.0004714 | 0.0015257 |
| 48 | 0.0006220 | 0.0020694 |
| 49 | 0.0008134 | 0.0027834 |
| 50 | 0.0010541 | 0.0037126 |
| 51 | 0.0013536 | 0.0049111 |
| 52 | 0.0017227 | 0.0064430 |
| 53 | 0.0021726 | 0.0083834 |
| 54 | 0.0027153 | 0.0108191 |
| 55 | 0.0033630 | 0.0138490 |
| 56 | 0.0041277 | 0.0175841 |
| 57 | 0.0050206 | 0.0221471 |
| 58 | 0.0060518 | 0.0276714 |
| 59 | 0.0072290 | 0.0342994 |
| 60 | 0.0085574 | 0.0421798 |
| 61 | 0.0100387 | 0.0514651 |
| 62 | 0.0116703 | 0.0623073 |
| 63 | 0.0134449 | 0.0748534 |
| 64 | 0.0153498 | 0.0892405 |
| 65 | 0.0173668 | 0.1055903 |
| 66 | 0.0194718 | 0.1240034 |
| 67 | 0.0216353 | 0.1445535 |
| 68 | 0.0238227 | 0.1672820 |
| 69 | 0.0259950 | 0.1921939 |
| 70 | 0.0281098 | 0.2192529 |
| 71 | 0.0301230 | 0.2483797 |
| 72 | 0.0319895 | 0.2794500 |
| 73 | 0.0336657 | 0.3122952 |
| 74 | 0.0351107 | 0.3467043 |
| 75 | 0.0362878 | 0.3824272 |
| 76 | 0.0371665 | 0.4191803 |
| 77 | 0.0377237 | 0.4566529 |
| 78 | 0.0379443 | 0.4945154 |
| 79 | 0.0378225 | 0.5324273 |
| 80 | 0.0373615 | 0.5700472 |
| 81 | 0.0365736 | 0.6070412 |
| 82 | 0.0354799 | 0.6430924 |
| 83 | 0.0341089 | 0.6779085 |
| 84 | 0.0324955 | 0.7112293 |
| 85 | 0.0306796 | 0.7428320 |
| 86 | 0.0287042 | 0.7725353 |
| 87 | 0.0266142 | 0.8002022 |
| 88 | 0.0244540 | 0.8257403 |
| 89 | 0.0222668 | 0.8491012 |
| 90 | 0.0200926 | 0.8702783 |
| 91 | 0.0179674 | 0.8893028 |
| 92 | 0.0159223 | 0.9062398 |
| 93 | 0.0139828 | 0.9211827 |
| 94 | 0.0121690 | 0.9342474 |
| 95 | 0.0104951 | 0.9455673 |
| 96 | 0.0089699 | 0.9552872 |
| 97 | 0.0075973 | 0.9635580 |
| 98 | 0.0063768 | 0.9705325 |
| 99 | 0.0053041 | 0.9763609 |
| 100 | 0.0043722 | 0.9811877 |
| 101 | 0.0035715 | 0.9851490 |
| 102 | 0.0028912 | 0.9883708 |
| 103 | 0.0023194 | 0.9909675 |
| 104 | 0.0018439 | 0.9930416 |
| 105 | 0.0014527 | 0.9946834 |
| 106 | 0.0011342 | 0.9959712 |
| 107 | 0.0008775 | 0.9969723 |
| 108 | 0.0006728 | 0.9977436 |
| 109 | 0.0005112 | 0.9983323 |
| 110 | 0.0003850 | 0.9987778 |
| 111 | 0.0002873 | 0.9991117 |
| 112 | 0.0002124 | 0.9993599 |
| 113 | 0.0001557 | 0.9995426 |
| 114 | 0.0001130 | 0.9996759 |
| 115 | 0.0000814 | 0.9997723 |
| 116 | 0.0000580 | 0.9998414 |
| 117 | 0.0000410 | 0.9998905 |
| 118 | 0.0000287 | 0.9999250 |
| 119 | 0.0000199 | 0.9999491 |
| 120 | 0.0000137 | 0.9999657 |
| 121 | 0.0000093 | 0.9999771 |
| 122 | 0.0000063 | 0.9999849 |
| 123 | 0.0000042 | 0.9999901 |
| 124 | 0.0000028 | 0.9999936 |
| 125 | 0.0000018 | 0.9999958 |
| 126 | 0.0000012 | 0.9999973 |
x <- round(min(masculinos$peso-10),0):round(max(masculinos$peso+10),0)
tabla.peso.femenino <- data.frame(x=x, prob.x = dnorm(x = x, mean = media.peso.f, sd = desv.std.peso.f), f.acum.x = pnorm(q = x, mean = media.peso.f, sd = desv.std.peso.f))
kable(tabla.peso.femenino, caption = "Peso Muestra Femenino")
| x | prob.x | f.acum.x |
|---|---|---|
| 44 | 0.0093485 | 0.0421392 |
| 45 | 0.0111267 | 0.0523603 |
| 46 | 0.0131007 | 0.0644580 |
| 47 | 0.0152589 | 0.0786232 |
| 48 | 0.0175815 | 0.0950307 |
| 49 | 0.0200398 | 0.1138315 |
| 50 | 0.0225960 | 0.1351430 |
| 51 | 0.0252042 | 0.1590409 |
| 52 | 0.0278111 | 0.1855511 |
| 53 | 0.0303575 | 0.2146430 |
| 54 | 0.0327805 | 0.2462249 |
| 55 | 0.0350163 | 0.2801416 |
| 56 | 0.0370021 | 0.3161741 |
| 57 | 0.0386800 | 0.3540430 |
| 58 | 0.0399989 | 0.3934143 |
| 59 | 0.0409180 | 0.4339075 |
| 60 | 0.0414078 | 0.4751070 |
| 61 | 0.0414528 | 0.5165747 |
| 62 | 0.0410515 | 0.5578638 |
| 63 | 0.0402167 | 0.5985330 |
| 64 | 0.0389750 | 0.6381613 |
| 65 | 0.0373654 | 0.6763603 |
| 66 | 0.0354370 | 0.7127858 |
| 67 | 0.0332465 | 0.7471469 |
| 68 | 0.0308559 | 0.7792121 |
| 69 | 0.0283291 | 0.8088133 |
| 70 | 0.0257295 | 0.8358461 |
| 71 | 0.0231171 | 0.8602681 |
| 72 | 0.0205465 | 0.8820943 |
| 73 | 0.0180653 | 0.9013909 |
| 74 | 0.0157128 | 0.9182679 |
| 75 | 0.0135197 | 0.9328698 |
| 76 | 0.0115076 | 0.9453677 |
| 77 | 0.0096895 | 0.9559498 |
| 78 | 0.0080710 | 0.9648134 |
| 79 | 0.0066504 | 0.9721578 |
| 80 | 0.0054210 | 0.9781780 |
| 81 | 0.0043713 | 0.9830597 |
| 82 | 0.0034869 | 0.9869757 |
| 83 | 0.0027516 | 0.9900833 |
| 84 | 0.0021479 | 0.9925228 |
| 85 | 0.0016587 | 0.9944173 |
| 86 | 0.0012671 | 0.9958727 |
| 87 | 0.0009575 | 0.9969788 |
| 88 | 0.0007158 | 0.9978104 |
| 89 | 0.0005294 | 0.9984289 |
| 90 | 0.0003873 | 0.9988839 |
| 91 | 0.0002803 | 0.9992151 |
| 92 | 0.0002007 | 0.9994536 |
| 93 | 0.0001421 | 0.9996234 |
| 94 | 0.0000996 | 0.9997431 |
| 95 | 0.0000690 | 0.9998265 |
| 96 | 0.0000473 | 0.9998840 |
| 97 | 0.0000321 | 0.9999233 |
| 98 | 0.0000215 | 0.9999498 |
| 99 | 0.0000143 | 0.9999674 |
| 100 | 0.0000094 | 0.9999791 |
| 101 | 0.0000061 | 0.9999867 |
| 102 | 0.0000039 | 0.9999917 |
| 103 | 0.0000025 | 0.9999948 |
| 104 | 0.0000016 | 0.9999968 |
| 105 | 0.0000010 | 0.9999981 |
| 106 | 0.0000006 | 0.9999988 |
| 107 | 0.0000004 | 0.9999993 |
| 108 | 0.0000002 | 0.9999996 |
| 109 | 0.0000001 | 0.9999998 |
| 110 | 0.0000001 | 0.9999999 |
| 111 | 0.0000000 | 0.9999999 |
| 112 | 0.0000000 | 1.0000000 |
| 113 | 0.0000000 | 1.0000000 |
| 114 | 0.0000000 | 1.0000000 |
| 115 | 0.0000000 | 1.0000000 |
| 116 | 0.0000000 | 1.0000000 |
| 117 | 0.0000000 | 1.0000000 |
| 118 | 0.0000000 | 1.0000000 |
| 119 | 0.0000000 | 1.0000000 |
| 120 | 0.0000000 | 1.0000000 |
| 121 | 0.0000000 | 1.0000000 |
| 122 | 0.0000000 | 1.0000000 |
| 123 | 0.0000000 | 1.0000000 |
| 124 | 0.0000000 | 1.0000000 |
| 125 | 0.0000000 | 1.0000000 |
| 126 | 0.0000000 | 1.0000000 |
g1 <- ggplot(data = tabla.peso.masculino, aes(x,prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Pesos MASCULINO Densidad P(x)", subtitle = paste("media = ",media.peso.m, "desv=", desv.std.peso.m )) +
geom_vline(xintercept = media.peso.m, colour="red")
#g1
g2 <- ggplot(data = tabla.peso.femenino, aes(x,prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("PESO FEMENINO. Densidad P(x)", subtitle = paste("media = ",media.peso.f, "desv=", desv.std.peso.f )) +
geom_vline(xintercept = media.peso.f, colour="red")
#g2
plot_grid(g1, g2)
media.estatura.m <- mean(masculinos$estatura)
desv.std.estatura.m <- sd(masculinos$estatura)
media.estatura.m
## [1] 177.7453
desv.std.estatura.m
## [1] 7.183629
media.estatura.f <- mean(femeninos$estatura)
desv.std.estatura.f <- sd(femeninos$estatura)
media.estatura.f
## [1] 164.8723
desv.std.estatura.f
## [1] 6.544602
Se toman los valores mínimos y máximos de estaturas, de esos valores se disminuye en diez a mínimo y aumenta en diez a máximo para contemplar mayor rango.
x <- round(min(masculinos$estatura-10),0):round(max(masculinos$estatura+10),0)
tabla.estatura.masculino <- data.frame(x=x, prob.x = dnorm(x = x, mean = media.estatura.m, sd = desv.std.estatura.m), f.acum.x = pnorm(q = x, mean = media.estatura.m, sd = desv.std.estatura.m))
kable(tabla.estatura.masculino, caption = "Estatura Muestra Masculino")
| x | prob.x | f.acum.x |
|---|---|---|
| 147 | 0.0000058 | 0.0000093 |
| 148 | 0.0000105 | 0.0000173 |
| 149 | 0.0000185 | 0.0000315 |
| 150 | 0.0000320 | 0.0000562 |
| 151 | 0.0000543 | 0.0000984 |
| 152 | 0.0000903 | 0.0001693 |
| 153 | 0.0001472 | 0.0002859 |
| 154 | 0.0002355 | 0.0004741 |
| 155 | 0.0003695 | 0.0007720 |
| 156 | 0.0005686 | 0.0012347 |
| 157 | 0.0008582 | 0.0019393 |
| 158 | 0.0012705 | 0.0029920 |
| 159 | 0.0018448 | 0.0045344 |
| 160 | 0.0026273 | 0.0067510 |
| 161 | 0.0036698 | 0.0098756 |
| 162 | 0.0050276 | 0.0141956 |
| 163 | 0.0067555 | 0.0200542 |
| 164 | 0.0089032 | 0.0278467 |
| 165 | 0.0115085 | 0.0380133 |
| 166 | 0.0145906 | 0.0510229 |
| 167 | 0.0181431 | 0.0673516 |
| 168 | 0.0221276 | 0.0874534 |
| 169 | 0.0264692 | 0.1117262 |
| 170 | 0.0310550 | 0.1404736 |
| 171 | 0.0357361 | 0.1738683 |
| 172 | 0.0403336 | 0.2119183 |
| 173 | 0.0446489 | 0.2544416 |
| 174 | 0.0484774 | 0.3010538 |
| 175 | 0.0516240 | 0.3511688 |
| 176 | 0.0539198 | 0.4040177 |
| 177 | 0.0552368 | 0.4586815 |
| 178 | 0.0555000 | 0.5141393 |
| 179 | 0.0546943 | 0.5693246 |
| 180 | 0.0528659 | 0.6231864 |
| 181 | 0.0501179 | 0.6747493 |
| 182 | 0.0466009 | 0.7231655 |
| 183 | 0.0424991 | 0.7677559 |
| 184 | 0.0380145 | 0.8080361 |
| 185 | 0.0333506 | 0.8437254 |
| 186 | 0.0286974 | 0.8747411 |
| 187 | 0.0242194 | 0.9011789 |
| 188 | 0.0200480 | 0.9232826 |
| 189 | 0.0162765 | 0.9414086 |
| 190 | 0.0129609 | 0.9559880 |
| 191 | 0.0101227 | 0.9674899 |
| 192 | 0.0077542 | 0.9763902 |
| 193 | 0.0058259 | 0.9831453 |
| 194 | 0.0042932 | 0.9881740 |
| 195 | 0.0031029 | 0.9918458 |
| 196 | 0.0021997 | 0.9944755 |
| 197 | 0.0015294 | 0.9963228 |
| 198 | 0.0010430 | 0.9975955 |
| 199 | 0.0006976 | 0.9984556 |
| 200 | 0.0004576 | 0.9990257 |
| 201 | 0.0002945 | 0.9993964 |
| 202 | 0.0001858 | 0.9996328 |
| 203 | 0.0001150 | 0.9997806 |
| 204 | 0.0000698 | 0.9998713 |
| 205 | 0.0000416 | 0.9999259 |
| 206 | 0.0000243 | 0.9999581 |
| 207 | 0.0000139 | 0.9999767 |
| 208 | 0.0000078 | 0.9999873 |
x <- round(min(femeninos$estatura-10),0):round(max(femeninos$estatura+10),0)
tabla.estatura.femenino <- data.frame(x=x, prob.x = dnorm(x = x, mean = media.estatura.f, sd = desv.std.estatura.f), f.acum.x = pnorm(q = x, mean = media.estatura.f, sd = desv.std.estatura.f))
kable(tabla.estatura.femenino, caption = "Estatura Muestra Femenino")
| x | prob.x | f.acum.x |
|---|---|---|
| 137 | 0.0000070 | 0.0000103 |
| 138 | 0.0000133 | 0.0000201 |
| 139 | 0.0000246 | 0.0000386 |
| 140 | 0.0000445 | 0.0000722 |
| 141 | 0.0000787 | 0.0001323 |
| 142 | 0.0001358 | 0.0002372 |
| 143 | 0.0002289 | 0.0004158 |
| 144 | 0.0003770 | 0.0007132 |
| 145 | 0.0006066 | 0.0011969 |
| 146 | 0.0009536 | 0.0019655 |
| 147 | 0.0014644 | 0.0031586 |
| 148 | 0.0021968 | 0.0049680 |
| 149 | 0.0032196 | 0.0076489 |
| 150 | 0.0046097 | 0.0115295 |
| 151 | 0.0064476 | 0.0170175 |
| 152 | 0.0088102 | 0.0245998 |
| 153 | 0.0117607 | 0.0348342 |
| 154 | 0.0153372 | 0.0483303 |
| 155 | 0.0195396 | 0.0657177 |
| 156 | 0.0243190 | 0.0876024 |
| 157 | 0.0295690 | 0.1145133 |
| 158 | 0.0351228 | 0.1468424 |
| 159 | 0.0407569 | 0.1847861 |
| 160 | 0.0462034 | 0.2282939 |
| 161 | 0.0511690 | 0.2770326 |
| 162 | 0.0553606 | 0.3303735 |
| 163 | 0.0585133 | 0.3874068 |
| 164 | 0.0604184 | 0.4469834 |
| 165 | 0.0609459 | 0.5077833 |
| 166 | 0.0600592 | 0.5684026 |
| 167 | 0.0578197 | 0.6274497 |
| 168 | 0.0543791 | 0.6836408 |
| 169 | 0.0499631 | 0.7358822 |
| 170 | 0.0448463 | 0.7833331 |
| 171 | 0.0393246 | 0.8254399 |
| 172 | 0.0336870 | 0.8619440 |
| 173 | 0.0281917 | 0.8928619 |
| 174 | 0.0230484 | 0.9184454 |
| 175 | 0.0184086 | 0.9391272 |
| 176 | 0.0143635 | 0.9554614 |
| 177 | 0.0109487 | 0.9680648 |
| 178 | 0.0081531 | 0.9775655 |
| 179 | 0.0059312 | 0.9845624 |
| 180 | 0.0042153 | 0.9895967 |
| 181 | 0.0029266 | 0.9931354 |
| 182 | 0.0019851 | 0.9955656 |
| 183 | 0.0013153 | 0.9971961 |
| 184 | 0.0008514 | 0.9982648 |
| 185 | 0.0005384 | 0.9989491 |
| 186 | 0.0003327 | 0.9993773 |
| 187 | 0.0002008 | 0.9996390 |
| 188 | 0.0001184 | 0.9997952 |
| 189 | 0.0000682 | 0.9998864 |
| 190 | 0.0000384 | 0.9999383 |
| 191 | 0.0000211 | 0.9999673 |
| 192 | 0.0000113 | 0.9999830 |
| 193 | 0.0000059 | 0.9999914 |
g1 <- ggplot(data = tabla.estatura.masculino, aes(x,prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("ESTATURAS MASCULINO Densidad P(x)", subtitle = paste("media = ",media.estatura.m, "desv=", desv.std.estatura.m ))+
geom_vline(xintercept = media.estatura.m, colour="red")
#g1
g2 <- ggplot(data = tabla.estatura.femenino, aes(x,prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("ESTATURAS FEMENINO. Densidad P(x)", subtitle = paste("media = ",media.estatura.f, "desv=", desv.std.estatura.f )) +
geom_vline(xintercept = media.estatura.f, colour="red")
#g2
plot_grid(g1, g2)
¿Cuál es la probabilidad de encontrar a una persona masculino que pese menor o igual de 60 kilogramos?
Gráfica de densidad
plotDist("norm", mean = media.peso.m, sd = desv.std.peso.m, groups = x <= 60, type = "h", xlab = "Peso Hombres", ylab = "Densidad" )
Calcular la probabilidad
prob <- pnorm(q = 60, mean = media.peso.m, sd = desv.std.peso.m)
paste("La probabilidad de encontrar a una persona masculino que pese menor de 60 kilogramos es de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino que pese menor de 60 kilogramos es de: 4.218 %"
¿Cuál es la probabilidad de encontrar a una persona femenino que pese menor o igual de 50 kilogramos?
Graficar la función en donde \(P(X \leq 50)\)
Gráfica de densidad
plotDist("norm", mean = media.peso.f, sd = desv.std.peso.f, groups = x <= 50, type = "h", xlab = "Peso Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 50, mean = media.peso.f, sd = desv.std.peso.f)
paste("La probabilidad de encontrar a una persona femenino que pese menor de 50 kilogramos es de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona femenino que pese menor de 50 kilogramos es de: 13.5143 %"
¿Cuál es la probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 180 centímetros?
Graficar la función en donde \(P(x>=180)\)
Gráfica de densidad
plotDist("norm", mean = media.estatura.m, sd = desv.std.estatura.m, groups = x >= 180, type = "h", xlab = "Estatura Hombres", ylab = "Densidad" )
prob <- pnorm(q = 180, mean = media.estatura.m, sd = desv.std.estatura.m, lower.tail = FALSE)
paste("La probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 180 de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 180 de: 37.6814 %"
¿Cuál es la probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 190 centímetros?
Graficar la función en donde \(P=x >=190\)
Gráfica de densidad
plotDist("norm", mean = media.estatura.m, sd = desv.std.estatura.m, groups = x >= 190, type = "h", xlab = "Estatura Hombres", ylab = "Densidad" )
prob <- pnorm(q = 190, mean = media.estatura.m, sd = desv.std.estatura.m, lower.tail = FALSE)
paste("La probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 190 de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 190 de: 4.4012 %"
¿Cuál es la probabilidad de encontrar a una persona masculino que tenga una estatura entre 160 y 170 centímetros?
Graficar la función en donde \(P( 160 \leq x \leq 170)\)
Gráfica de densidad
plotDist("norm", mean = media.estatura.m, sd = desv.std.estatura.m, groups = x >= 160 & x <= 170, type = "h", xlab = "Estatura Hombres", ylab = "Densidad" )
prob <- pnorm(q = 170, mean = media.estatura.m, sd = desv.std.estatura.m) - pnorm(q = 160, mean = media.estatura.m, sd = desv.std.estatura.m)
paste("La probabilidad de encontrar a una persona masculino que tenga una estatura entre 160 y 170 centímeros de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino que tenga una estatura entre 160 y 170 centímeros de: 13.3723 %"
¿Cuál es la probabilidad de encontrar a una persona masculino que tenga una estatura entre 190 y 195 centímetros?
Graficar la función en donde \(P(190 \leq x \leq 195)\)
Gráfica de densidad
plotDist("norm", mean = media.estatura.m, sd = desv.std.estatura.m, groups = x >= 190 & x <= 195, type = "h", xlab = "Estatura Hombres", ylab = "Densidad" )
prob <- pnorm(q = 195, mean = media.estatura.m, sd = desv.std.estatura.m) - pnorm(q = 190, mean = media.estatura.m, sd = desv.std.estatura.m)
paste("La probabilidad de encontrar a una persona masculino que tenga una estatura entre 190 y 195 centímeros es de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino que tenga una estatura entre 190 y 195 centímeros es de: 3.5858 %"
¿Cuál es la probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 180 centímetros?
Graficar la función en donde \(P=(x>=180)\)
Gráfica de densidad
plotDist("norm", mean = media.estatura.f, sd = desv.std.estatura.f, groups = x >= 180, type = "h", xlab = "Estatura Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 180, mean = media.estatura.f, sd = desv.std.estatura.f, lower.tail = FALSE)
paste("La probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 180 de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 180 de: 1.0403 %"
¿Cuál es la probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 190 centímetros?
Graficar la función en donde \(P(x>=190)\)
Gráfica de densidad
plotDist("norm", mean = media.estatura.f, sd = desv.std.estatura.f, groups = x >= 190, type = "h", xlab = "Estatura Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 190, mean = media.estatura.f, sd = desv.std.estatura.f, lower.tail = FALSE)
paste("La probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 190 de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 190 de: 0.0062 %"
¿Cuál es la probabilidad de encontrar a una persona femenino que tenga una estatura entre 160 y 170 centímetros?
Graficar la función en donde \(P(160 \leq x \leq 170)\)
Gráfica de densidad
plotDist("norm", mean = media.estatura.f, sd = desv.std.estatura.f, groups = x >= 160 & x <= 170, type = "h", xlab = "Estatura Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 170, mean = media.estatura.f, sd = desv.std.estatura.f) - pnorm(q = 160, mean = media.estatura.f, sd = desv.std.estatura.f)
paste("La probabilidad de encontrar a una persona femenino que tenga una estatura entre 160 y 170 centímeros de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona femenino que tenga una estatura entre 160 y 170 centímeros de: 55.5039 %"
¿Cuál es la probabilidad de encontrar a una persona femenino que tenga una estatura entre 190 y 195 centímetros?
Graficar la función en donde \(P(190 \leq x \leq 195)\)
Gráfica de densidad
plotDist("norm", mean = media.estatura.f, sd = desv.std.estatura.f, groups = x >= 190 & x <= 195, type = "h", xlab = "Estatura Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 195, mean = media.estatura.f, sd = desv.std.estatura.f) - pnorm(q = 190, mean = media.estatura.f, sd = desv.std.estatura.f)
paste("La probabilidad de encontrar a una persona femenino que tenga una estatura entre 190 y 195 centímeros es de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona femenino que tenga una estatura entre 190 y 195 centímeros es de: 0.006 %"
¿Cuál es la probabilidad de encontrar a una persona masculino o femenino que tenga una estatura entre 160 y 170 centímetros?
Graficar la función en donde \(P(160 \leq x \leq 170)\)
Gráfica de densidad
plotDist("norm", mean = mean(datos$estatura), sd = sd(datos$estatura), groups = x >= 160 & x <= 170, type = "h", xlab = "Estatura Hombres y Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 170, mean = mean(datos$estatura), sd = sd(datos$estatura)) - pnorm(q = 160, mean = mean(datos$estatura), sd = sd(datos$estatura))
paste("La probabilidad de encontrar a una persona masculino o femenino que tenga una estatura entre 160 y 170 centímetros? es de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino o femenino que tenga una estatura entre 160 y 170 centímetros? es de: 33.3526 %"
Tenemos una serie de datos acerca de la estatur y peso de un grupo de personas y con esos datos se busca resolver ciertas incognitas por medio del uso de la distribucion normal. Primero hacemos los histogramas de los datos tanto del peso como de la estatura, despues calculamos las medias y desviaciones necesarias como la media de peso del sexo masculino es de 78.144 con una desviacion de 10.5128 y tambien calculamos la media de peso femenino la cual nos da un resultado de 60.600 y la desviacion de ese dato de 9.6156.
Con los datos anteriores de ambos sexos podemos hacer las tablas de distribucion de pesos tanto de hombres como mujeres y con esas tablas de distribucion podemos generar las graficas de densidad lo cual como su nombre lo dice nos ayuda a ver y conocer los datos de manera mas grafica y amigable.
Como se menciono al principio del ejercicio tenemos dos datos cruciales los cuales son peso y estatura, como ya tenemos los datos del peso sigue calcular con la estatura en la cual obtenemos que la media de estatura masculina es de 177.74 y una desviacion de 7.1836 y de mujeres la media de estatura es de 164.87 y una desviacion de 6.544602. con esos datos hacemos la tabla de distribucion acerca de la estatura y con eso podemos hacer las graficas de densidad de los datos de ambos sexos.
Ya con estos datos en nuestro control podemos resolver las incognitas necesarias con las formulas que conocemos del marco teorico como por ejemplo.
La probabilidad de encontrar a una persona masculino que pese menor de 60 kilogramos es de: 4.218 %
La probabilidad de encontrar a una persona femenino que pese menor de 50 kilogramos es de: 13.5143
La probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 180 de: 37.6814 %
a probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 190 de: 4.4012 %
La probabilidad de encontrar a una persona masculino que tenga una estatura entre 160 y 170 centímeros de: 13.3723 %
etc.
Una empresa de material eléctrico fabrica bombillas (focos) de luz que tienen una duración, antes de quemarse (fundirse), que se distribuye normalmente con media igual a 800 horas y una desviación estándar de 40 horas. Encuentre la probabilidad de que una bombilla se queme entre 778 y 834 horas. (walpole_probabilidad_2012?)].
\[\mu = 800\]
\[\sigma = 40\]
\[ P(778 \leq x \leq 834) \]
media <- 800
desv.stadandar <- 40
plotDist("norm", mean = media, sd = desv.stadandar, groups = x >= 778 & x <= 834, type = "h", xlab = "Distribución de la duración bombillas (focos)", ylab = "Densidad" )
prob <- pnorm(q = 834, mean = media, sd = desv.stadandar) - pnorm(q = 778, mean = media, sd = desv.stadandar)
paste("La probabilidad de que una bombilla se queme entre 778 y 834 horas es:", round(prob * 100, 4), "%")
## [1] "La probabilidad de que una bombilla se queme entre 778 y 834 horas es: 51.1178 %"
Dado que la probabilidad de el área bajo la curva de una distribución normal es del 100% y solicitan la probabilidad en el intervalo entre 778 y 834, entonces se resta la probabilidad de 834 menos la probabilidad de 778 para encontrar el área bajo la curva de este intervalo de esa variable aleatoria. En la gráfica el color rosa es el área bajo la curva del intérvalo.
La probabilidad de que un foco se funda en un rango entre 778 horas y 834 horas es de 51.1178 %
Los sueldos mensuales en una empresa siguen una distribución normal con media de 1200 soles, y desviación estándar de 200 soles.
¿Qué porcentaje de trabajadores ganan entre 1000 y 1550 soles?(matemovil, n.d.).
\[ \mu = 1200 \]
\[ \sigma = 200 \]
\[ 1000 \leq x \leq 1550 \]
media <- 1200
desv.stadandar <- 200
plotDist("norm", mean = media, sd = desv.stadandar, groups = x >= 1000 & x <= 1550, type = "h", xlab = "Ganancias de trabajadores en soles", ylab = "Densidad" )
4.4.3 Cálculo de la probabilidad
prob <- pnorm(q = 1550, mean = media, sd = desv.stadandar) - pnorm(q = 1000, mean = media, sd = desv.stadandar)
paste("La probabilidad de que una persoan gane entre 1000 y 1550 soles es de:", round(prob * 100, 4), "%")
## [1] "La probabilidad de que una persoan gane entre 1000 y 1550 soles es de: 80.1286 %"
La probabilidad de que una persona gane entre 1000 y 1550 soles es de:“, 80.1286,”%" que es el porcentaje de trabajadores que ganan en ese intérvalo.
En una distribución normal \(N(\mu=5, \sigma=2)\) calcula las siguientes probabilidades:
Inicializar valores de media y desviación [anónimo]
media <- 5
desv <- 2
plotDist("norm", mean = media, sd = desv, groups = x <= 3.25, type = "h", xlab = "Contexto indistinto", ylab = "Densidad" )
x = 3.25
pnorm(q = x, mean = media, sd= desv)
## [1] 0.190787
plotDist("norm", mean = media, sd = desv, groups = x <= 4.5, type = "h", xlab = "Contexto indistinto", ylab = "Densidad" )
x <- 4.5
pnorm(q = x, mean = media, sd= desv, lower.tail = FALSE)
## [1] 0.5987063
plotDist("norm", mean = media, sd = desv, groups = x <= 7.2, type = "h", xlab = "Contexto indistinto", ylab = "Densidad" )
x <- 7.2
pnorm(q = x, mean = media, sd= desv)
## [1] 0.8643339
plotDist("norm", mean = media, sd = desv, groups = x >= 3 & x<= 6 , type = "h", xlab = "Contexto indistinto", ylab = "Densidad" )
x1 <- 6
x2 <- 3
pnorm(q = x1, mean = media, sd = desv) - pnorm(q = x2, mean = media, sd = desv)
## [1] 0.5328072
Interpretación
Es difícil etiquetar la carne empaquetada con su peso correcto debido a los efectos de pérdida de líquido (definido como porcentaje del peso original de la carne). Supongamos que la pérdida de líquido en un paquete de pechuga de pollo se distribuye como normal con media 44 y desviación típica 11. (UC3M, n.d.).
media <- 0.04
desv <- 0.01
¿Cuál es la probabilidad de que de que esté entre 3 y 5 porciento.
plotDist("norm", mean = media, sd = desv, groups = x >= 0.03 & x <= 0.05, type = "h", xlab = "Carne empaquetada", ylab = "Densidad" )
\(P(3\)
pnorm(q = 0.05, mean = media, sd = desv) - pnorm(q = 0.03, mean = media, sd = desv)
## [1] 0.6826895
matemovil. n.d. “Probabilidad Condicional, Ejercicios Resueltos.” https://matemovil.com/probabilidad-condicional-ejercicios-resueltos/. UC3M. n.d. “Introducción a La Estadística y Probabilidad.” http://halweb.uc3m.es/esp/Personal/personas/mwiper/docencia/Spanish/Introduction_to_Statistics/intro_continuous2.pdf. Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012a. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.
———. 2012b. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.