Identificar en una distribución normal, los valores de la curva o los valores de la función de densidad, graficar el área bajo la curva y calcular probabilidades.
Realizar distribuciones de probabilidad conforme a la distribución de probabilidad normal a partir de valores iniciales de los ejercicios identificando y visualizando la función de densidad y calculando probabilidades.
library(dplyr)
library(mosaic)
## Warning: package 'mosaic' was built under R version 4.0.5
library(readr)
library(ggplot2) # Para gráficos
library(knitr) # Para formateo de datos
library(cowplot) #Imágenes en el mismo renglón
## Warning: package 'cowplot' was built under R version 4.0.5
options(scipen=999) # Notación normal
datos <- read.table("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/body.dat.txt", quote="\"", comment.char="")
datos <- as.data.frame(datos)
colnames(datos)[23:25] <- c("peso", "estatura", "genero")
# Solo nos interesan las tres últimas columnas
datos <- select(datos, estatura, peso, genero)
head(datos)
## estatura peso genero
## 1 174.0 65.6 1
## 2 175.3 71.8 1
## 3 193.5 80.7 1
## 4 186.5 72.6 1
## 5 187.2 78.8 1
## 6 181.5 74.8 1
tail(datos)
## estatura peso genero
## 502 157.5 76.8 0
## 503 176.5 71.8 0
## 504 164.4 55.5 0
## 505 160.7 48.6 0
## 506 174.0 66.4 0
## 507 163.8 67.3 0
ggplot(datos, aes(x = 1:nrow(datos), y = peso)) +
geom_point(colour = "red")
ggplot(datos, aes(x = 1:nrow(datos), y = estatura)) +
geom_point(colour = "blue")
ggplot(datos) +
geom_histogram(aes(x = peso))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggplot(datos) +
geom_histogram(aes(x = estatura))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
datos$genero <- as.factor(datos$genero)
masculinos <- filter(datos, genero == 1)
femeninos <- filter(datos, genero == 0)
media.peso.m <- mean(masculinos$peso)
desv.std.peso.m <- sd(masculinos$peso)
media.peso.m
## [1] 78.14453
desv.std.peso.m
## [1] 10.51289
media.peso.f <- mean(femeninos$peso)
desv.std.peso.f <- sd(femeninos$peso)
media.peso.f
## [1] 60.60038
desv.std.peso.f
## [1] 9.615699
Se toman los valores mínimos y máximos de pesos, de esos valores se disminuye en diez a mínimo y aumenta en diez a máximo para contemplar mayor rango.
x <- round(min(masculinos$peso-10),0):round(max(masculinos$peso+10),0)
tabla.peso.masculino <- data.frame(x=x, prob.x = dnorm(x = x, mean = media.peso.m, sd = desv.std.peso.m), f.acum.x = pnorm(q = x, mean = media.peso.m, sd = desv.std.peso.m))
kable(tabla.peso.masculino, caption = "Peso Muestra Masculino")
x | prob.x | f.acum.x |
---|---|---|
44 | 0.0001943 | 0.0005814 |
45 | 0.0002635 | 0.0008087 |
46 | 0.0003540 | 0.0011155 |
47 | 0.0004714 | 0.0015257 |
48 | 0.0006220 | 0.0020694 |
49 | 0.0008134 | 0.0027834 |
50 | 0.0010541 | 0.0037126 |
51 | 0.0013536 | 0.0049111 |
52 | 0.0017227 | 0.0064430 |
53 | 0.0021726 | 0.0083834 |
54 | 0.0027153 | 0.0108191 |
55 | 0.0033630 | 0.0138490 |
56 | 0.0041277 | 0.0175841 |
57 | 0.0050206 | 0.0221471 |
58 | 0.0060518 | 0.0276714 |
59 | 0.0072290 | 0.0342994 |
60 | 0.0085574 | 0.0421798 |
61 | 0.0100387 | 0.0514651 |
62 | 0.0116703 | 0.0623073 |
63 | 0.0134449 | 0.0748534 |
64 | 0.0153498 | 0.0892405 |
65 | 0.0173668 | 0.1055903 |
66 | 0.0194718 | 0.1240034 |
67 | 0.0216353 | 0.1445535 |
68 | 0.0238227 | 0.1672820 |
69 | 0.0259950 | 0.1921939 |
70 | 0.0281098 | 0.2192529 |
71 | 0.0301230 | 0.2483797 |
72 | 0.0319895 | 0.2794500 |
73 | 0.0336657 | 0.3122952 |
74 | 0.0351107 | 0.3467043 |
75 | 0.0362878 | 0.3824272 |
76 | 0.0371665 | 0.4191803 |
77 | 0.0377237 | 0.4566529 |
78 | 0.0379443 | 0.4945154 |
79 | 0.0378225 | 0.5324273 |
80 | 0.0373615 | 0.5700472 |
81 | 0.0365736 | 0.6070412 |
82 | 0.0354799 | 0.6430924 |
83 | 0.0341089 | 0.6779085 |
84 | 0.0324955 | 0.7112293 |
85 | 0.0306796 | 0.7428320 |
86 | 0.0287042 | 0.7725353 |
87 | 0.0266142 | 0.8002022 |
88 | 0.0244540 | 0.8257403 |
89 | 0.0222668 | 0.8491012 |
90 | 0.0200926 | 0.8702783 |
91 | 0.0179674 | 0.8893028 |
92 | 0.0159223 | 0.9062398 |
93 | 0.0139828 | 0.9211827 |
94 | 0.0121690 | 0.9342474 |
95 | 0.0104951 | 0.9455673 |
96 | 0.0089699 | 0.9552872 |
97 | 0.0075973 | 0.9635580 |
98 | 0.0063768 | 0.9705325 |
99 | 0.0053041 | 0.9763609 |
100 | 0.0043722 | 0.9811877 |
101 | 0.0035715 | 0.9851490 |
102 | 0.0028912 | 0.9883708 |
103 | 0.0023194 | 0.9909675 |
104 | 0.0018439 | 0.9930416 |
105 | 0.0014527 | 0.9946834 |
106 | 0.0011342 | 0.9959712 |
107 | 0.0008775 | 0.9969723 |
108 | 0.0006728 | 0.9977436 |
109 | 0.0005112 | 0.9983323 |
110 | 0.0003850 | 0.9987778 |
111 | 0.0002873 | 0.9991117 |
112 | 0.0002124 | 0.9993599 |
113 | 0.0001557 | 0.9995426 |
114 | 0.0001130 | 0.9996759 |
115 | 0.0000814 | 0.9997723 |
116 | 0.0000580 | 0.9998414 |
117 | 0.0000410 | 0.9998905 |
118 | 0.0000287 | 0.9999250 |
119 | 0.0000199 | 0.9999491 |
120 | 0.0000137 | 0.9999657 |
121 | 0.0000093 | 0.9999771 |
122 | 0.0000063 | 0.9999849 |
123 | 0.0000042 | 0.9999901 |
124 | 0.0000028 | 0.9999936 |
125 | 0.0000018 | 0.9999958 |
126 | 0.0000012 | 0.9999973 |
x <- round(min(masculinos$peso-10),0):round(max(masculinos$peso+10),0)
tabla.peso.femenino <- data.frame(x=x, prob.x = dnorm(x = x, mean = media.peso.f, sd = desv.std.peso.f), f.acum.x = pnorm(q = x, mean = media.peso.f, sd = desv.std.peso.f))
kable(tabla.peso.femenino, caption = "Peso Muestra Femenino")
x | prob.x | f.acum.x |
---|---|---|
44 | 0.0093485 | 0.0421392 |
45 | 0.0111267 | 0.0523603 |
46 | 0.0131007 | 0.0644580 |
47 | 0.0152589 | 0.0786232 |
48 | 0.0175815 | 0.0950307 |
49 | 0.0200398 | 0.1138315 |
50 | 0.0225960 | 0.1351430 |
51 | 0.0252042 | 0.1590409 |
52 | 0.0278111 | 0.1855511 |
53 | 0.0303575 | 0.2146430 |
54 | 0.0327805 | 0.2462249 |
55 | 0.0350163 | 0.2801416 |
56 | 0.0370021 | 0.3161741 |
57 | 0.0386800 | 0.3540430 |
58 | 0.0399989 | 0.3934143 |
59 | 0.0409180 | 0.4339075 |
60 | 0.0414078 | 0.4751070 |
61 | 0.0414528 | 0.5165747 |
62 | 0.0410515 | 0.5578638 |
63 | 0.0402167 | 0.5985330 |
64 | 0.0389750 | 0.6381613 |
65 | 0.0373654 | 0.6763603 |
66 | 0.0354370 | 0.7127858 |
67 | 0.0332465 | 0.7471469 |
68 | 0.0308559 | 0.7792121 |
69 | 0.0283291 | 0.8088133 |
70 | 0.0257295 | 0.8358461 |
71 | 0.0231171 | 0.8602681 |
72 | 0.0205465 | 0.8820943 |
73 | 0.0180653 | 0.9013909 |
74 | 0.0157128 | 0.9182679 |
75 | 0.0135197 | 0.9328698 |
76 | 0.0115076 | 0.9453677 |
77 | 0.0096895 | 0.9559498 |
78 | 0.0080710 | 0.9648134 |
79 | 0.0066504 | 0.9721578 |
80 | 0.0054210 | 0.9781780 |
81 | 0.0043713 | 0.9830597 |
82 | 0.0034869 | 0.9869757 |
83 | 0.0027516 | 0.9900833 |
84 | 0.0021479 | 0.9925228 |
85 | 0.0016587 | 0.9944173 |
86 | 0.0012671 | 0.9958727 |
87 | 0.0009575 | 0.9969788 |
88 | 0.0007158 | 0.9978104 |
89 | 0.0005294 | 0.9984289 |
90 | 0.0003873 | 0.9988839 |
91 | 0.0002803 | 0.9992151 |
92 | 0.0002007 | 0.9994536 |
93 | 0.0001421 | 0.9996234 |
94 | 0.0000996 | 0.9997431 |
95 | 0.0000690 | 0.9998265 |
96 | 0.0000473 | 0.9998840 |
97 | 0.0000321 | 0.9999233 |
98 | 0.0000215 | 0.9999498 |
99 | 0.0000143 | 0.9999674 |
100 | 0.0000094 | 0.9999791 |
101 | 0.0000061 | 0.9999867 |
102 | 0.0000039 | 0.9999917 |
103 | 0.0000025 | 0.9999948 |
104 | 0.0000016 | 0.9999968 |
105 | 0.0000010 | 0.9999981 |
106 | 0.0000006 | 0.9999988 |
107 | 0.0000004 | 0.9999993 |
108 | 0.0000002 | 0.9999996 |
109 | 0.0000001 | 0.9999998 |
110 | 0.0000001 | 0.9999999 |
111 | 0.0000000 | 0.9999999 |
112 | 0.0000000 | 1.0000000 |
113 | 0.0000000 | 1.0000000 |
114 | 0.0000000 | 1.0000000 |
115 | 0.0000000 | 1.0000000 |
116 | 0.0000000 | 1.0000000 |
117 | 0.0000000 | 1.0000000 |
118 | 0.0000000 | 1.0000000 |
119 | 0.0000000 | 1.0000000 |
120 | 0.0000000 | 1.0000000 |
121 | 0.0000000 | 1.0000000 |
122 | 0.0000000 | 1.0000000 |
123 | 0.0000000 | 1.0000000 |
124 | 0.0000000 | 1.0000000 |
125 | 0.0000000 | 1.0000000 |
126 | 0.0000000 | 1.0000000 |
g1 <- ggplot(data = tabla.peso.masculino, aes(x,prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Pesos MASCULINO Densidad P(x)", subtitle = paste("media = ",media.peso.m, "desv=", desv.std.peso.m )) +
geom_vline(xintercept = media.peso.m, colour="red")
#g1
g2 <- ggplot(data = tabla.peso.femenino, aes(x,prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("PESO FEMENINO. Densidad P(x)", subtitle = paste("media = ",media.peso.f, "desv=", desv.std.peso.f )) +
geom_vline(xintercept = media.peso.f, colour="red")
#g2
plot_grid(g1, g2)
media.estatura.m <- mean(masculinos$estatura)
desv.std.estatura.m <- sd(masculinos$estatura)
media.estatura.m
## [1] 177.7453
desv.std.estatura.m
## [1] 7.183629
media.estatura.f <- mean(femeninos$estatura)
desv.std.estatura.f <- sd(femeninos$estatura)
media.estatura.f
## [1] 164.8723
desv.std.estatura.f
## [1] 6.544602
Se toman los valores mínimos y máximos de estaturas, de esos valores se disminuye en diez a mínimo y aumenta en diez a máximo para contemplar mayor rango.
x <- round(min(masculinos$estatura-10),0):round(max(masculinos$estatura+10),0)
tabla.estatura.masculino <- data.frame(x=x, prob.x = dnorm(x = x, mean = media.estatura.m, sd = desv.std.estatura.m), f.acum.x = pnorm(q = x, mean = media.estatura.m, sd = desv.std.estatura.m))
kable(tabla.estatura.masculino, caption = "Estatura Muestra Masculino")
x | prob.x | f.acum.x |
---|---|---|
147 | 0.0000058 | 0.0000093 |
148 | 0.0000105 | 0.0000173 |
149 | 0.0000185 | 0.0000315 |
150 | 0.0000320 | 0.0000562 |
151 | 0.0000543 | 0.0000984 |
152 | 0.0000903 | 0.0001693 |
153 | 0.0001472 | 0.0002859 |
154 | 0.0002355 | 0.0004741 |
155 | 0.0003695 | 0.0007720 |
156 | 0.0005686 | 0.0012347 |
157 | 0.0008582 | 0.0019393 |
158 | 0.0012705 | 0.0029920 |
159 | 0.0018448 | 0.0045344 |
160 | 0.0026273 | 0.0067510 |
161 | 0.0036698 | 0.0098756 |
162 | 0.0050276 | 0.0141956 |
163 | 0.0067555 | 0.0200542 |
164 | 0.0089032 | 0.0278467 |
165 | 0.0115085 | 0.0380133 |
166 | 0.0145906 | 0.0510229 |
167 | 0.0181431 | 0.0673516 |
168 | 0.0221276 | 0.0874534 |
169 | 0.0264692 | 0.1117262 |
170 | 0.0310550 | 0.1404736 |
171 | 0.0357361 | 0.1738683 |
172 | 0.0403336 | 0.2119183 |
173 | 0.0446489 | 0.2544416 |
174 | 0.0484774 | 0.3010538 |
175 | 0.0516240 | 0.3511688 |
176 | 0.0539198 | 0.4040177 |
177 | 0.0552368 | 0.4586815 |
178 | 0.0555000 | 0.5141393 |
179 | 0.0546943 | 0.5693246 |
180 | 0.0528659 | 0.6231864 |
181 | 0.0501179 | 0.6747493 |
182 | 0.0466009 | 0.7231655 |
183 | 0.0424991 | 0.7677559 |
184 | 0.0380145 | 0.8080361 |
185 | 0.0333506 | 0.8437254 |
186 | 0.0286974 | 0.8747411 |
187 | 0.0242194 | 0.9011789 |
188 | 0.0200480 | 0.9232826 |
189 | 0.0162765 | 0.9414086 |
190 | 0.0129609 | 0.9559880 |
191 | 0.0101227 | 0.9674899 |
192 | 0.0077542 | 0.9763902 |
193 | 0.0058259 | 0.9831453 |
194 | 0.0042932 | 0.9881740 |
195 | 0.0031029 | 0.9918458 |
196 | 0.0021997 | 0.9944755 |
197 | 0.0015294 | 0.9963228 |
198 | 0.0010430 | 0.9975955 |
199 | 0.0006976 | 0.9984556 |
200 | 0.0004576 | 0.9990257 |
201 | 0.0002945 | 0.9993964 |
202 | 0.0001858 | 0.9996328 |
203 | 0.0001150 | 0.9997806 |
204 | 0.0000698 | 0.9998713 |
205 | 0.0000416 | 0.9999259 |
206 | 0.0000243 | 0.9999581 |
207 | 0.0000139 | 0.9999767 |
208 | 0.0000078 | 0.9999873 |
x <- round(min(femeninos$estatura-10),0):round(max(femeninos$estatura+10),0)
tabla.estatura.femenino <- data.frame(x=x, prob.x = dnorm(x = x, mean = media.estatura.f, sd = desv.std.estatura.f), f.acum.x = pnorm(q = x, mean = media.estatura.f, sd = desv.std.estatura.f))
kable(tabla.estatura.femenino, caption = "Estatura Muestra Femenino")
x | prob.x | f.acum.x |
---|---|---|
137 | 0.0000070 | 0.0000103 |
138 | 0.0000133 | 0.0000201 |
139 | 0.0000246 | 0.0000386 |
140 | 0.0000445 | 0.0000722 |
141 | 0.0000787 | 0.0001323 |
142 | 0.0001358 | 0.0002372 |
143 | 0.0002289 | 0.0004158 |
144 | 0.0003770 | 0.0007132 |
145 | 0.0006066 | 0.0011969 |
146 | 0.0009536 | 0.0019655 |
147 | 0.0014644 | 0.0031586 |
148 | 0.0021968 | 0.0049680 |
149 | 0.0032196 | 0.0076489 |
150 | 0.0046097 | 0.0115295 |
151 | 0.0064476 | 0.0170175 |
152 | 0.0088102 | 0.0245998 |
153 | 0.0117607 | 0.0348342 |
154 | 0.0153372 | 0.0483303 |
155 | 0.0195396 | 0.0657177 |
156 | 0.0243190 | 0.0876024 |
157 | 0.0295690 | 0.1145133 |
158 | 0.0351228 | 0.1468424 |
159 | 0.0407569 | 0.1847861 |
160 | 0.0462034 | 0.2282939 |
161 | 0.0511690 | 0.2770326 |
162 | 0.0553606 | 0.3303735 |
163 | 0.0585133 | 0.3874068 |
164 | 0.0604184 | 0.4469834 |
165 | 0.0609459 | 0.5077833 |
166 | 0.0600592 | 0.5684026 |
167 | 0.0578197 | 0.6274497 |
168 | 0.0543791 | 0.6836408 |
169 | 0.0499631 | 0.7358822 |
170 | 0.0448463 | 0.7833331 |
171 | 0.0393246 | 0.8254399 |
172 | 0.0336870 | 0.8619440 |
173 | 0.0281917 | 0.8928619 |
174 | 0.0230484 | 0.9184454 |
175 | 0.0184086 | 0.9391272 |
176 | 0.0143635 | 0.9554614 |
177 | 0.0109487 | 0.9680648 |
178 | 0.0081531 | 0.9775655 |
179 | 0.0059312 | 0.9845624 |
180 | 0.0042153 | 0.9895967 |
181 | 0.0029266 | 0.9931354 |
182 | 0.0019851 | 0.9955656 |
183 | 0.0013153 | 0.9971961 |
184 | 0.0008514 | 0.9982648 |
185 | 0.0005384 | 0.9989491 |
186 | 0.0003327 | 0.9993773 |
187 | 0.0002008 | 0.9996390 |
188 | 0.0001184 | 0.9997952 |
189 | 0.0000682 | 0.9998864 |
190 | 0.0000384 | 0.9999383 |
191 | 0.0000211 | 0.9999673 |
192 | 0.0000113 | 0.9999830 |
193 | 0.0000059 | 0.9999914 |
g1 <- ggplot(data = tabla.estatura.masculino, aes(x,prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("ESTATURAS MASCULINO Densidad P(x)", subtitle = paste("media = ",media.estatura.m, "desv=", desv.std.estatura.m ))+
geom_vline(xintercept = media.estatura.m, colour="red")
#g1
g2 <- ggplot(data = tabla.estatura.femenino, aes(x,prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("ESTATURAS FEMENINO. Densidad P(x)", subtitle = paste("media = ",media.estatura.f, "desv=", desv.std.estatura.f )) +
geom_vline(xintercept = media.estatura.f, colour="red")
#g2
plot_grid(g1, g2)
¿Cuál es la probabilidad de encontrar a una persona masculino que pese menor o igual de 60 kilogramos?
Graficar la función en donde \(P(x≤60)\)
Gráfica de densidad.
plotDist("norm", mean = media.peso.m, sd = desv.std.peso.m, groups = x <= 60, type = "h", xlab = "Peso Hombres", ylab = "Densidad" )
prob <- pnorm(q = 60, mean = media.peso.m, sd = desv.std.peso.m)
paste("La probabilidad de encontrar a una persona masculino que pese menor de 60 kilogramos es de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino que pese menor de 60 kilogramos es de: 4.218 %"
¿Cuál es la probabilidad de encontrar a una persona femenino que pese menor o igual de 50 kilogramos?
Graficar la función en donde \(P(x≤50)\)
Gráfica de densidad.
plotDist("norm", mean = media.peso.f, sd = desv.std.peso.f, groups = x <= 50, type = "h", xlab = "Peso Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 50, mean = media.peso.f, sd = desv.std.peso.f)
paste("La probabilidad de encontrar a una persona femenino que pese menor de 50 kilogramos es de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona femenino que pese menor de 50 kilogramos es de: 13.5143 %"
¿Cuál es la probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 180 centímetros?
Graficar la función en donde \(P(x>=180)\)
Gráfica de densidad.
plotDist("norm", mean = media.estatura.m, sd = desv.std.estatura.m, groups = x >= 180, type = "h", xlab = "Estatura Hombres", ylab = "Densidad" )
prob <- pnorm(q = 180, mean = media.estatura.m, sd = desv.std.estatura.m, lower.tail = FALSE)
paste("La probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 180 de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 180 de: 37.6814 %"
¿Cuál es la probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 190 centímetros?
Graficar la función en donde \(x>=190\)
Gráfica de densidad.
plotDist("norm", mean = media.estatura.m, sd = desv.std.estatura.m, groups = x >= 190, type = "h", xlab = "Estatura Hombres", ylab = "Densidad" )
prob <- pnorm(q = 190, mean = media.estatura.m, sd = desv.std.estatura.m, lower.tail = FALSE)
paste("La probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 190 de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino que tenga una estatura mayor o igual de 190 de: 4.4012 %"
¿Cuál es la probabilidad de encontrar a una persona masculino que tenga una estatura entre 160 y 170 centímetros?
Graficar la función en donde \(P(160≤x≤170)\)
Gráfica de densidad.
plotDist("norm", mean = media.estatura.m, sd = desv.std.estatura.m, groups = x >= 160 & x <= 170, type = "h", xlab = "Estatura Hombres", ylab = "Densidad" )
prob <- pnorm(q = 170, mean = media.estatura.m, sd = desv.std.estatura.m) - pnorm(q = 160, mean = media.estatura.m, sd = desv.std.estatura.m)
paste("La probabilidad de encontrar a una persona masculino que tenga una estatura entre 160 y 170 centímeros de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino que tenga una estatura entre 160 y 170 centímeros de: 13.3723 %"
¿Cuál es la probabilidad de encontrar a una persona masculino que tenga una estatura entre 190 y 195 centímetros?
Graficar la función en donde \(P(190≤x≤195)\)
Gráfica de densidad.
plotDist("norm", mean = media.estatura.m, sd = desv.std.estatura.m, groups = x >= 190 & x <= 195, type = "h", xlab = "Estatura Hombres", ylab = "Densidad" )
prob <- pnorm(q = 195, mean = media.estatura.m, sd = desv.std.estatura.m) - pnorm(q = 190, mean = media.estatura.m, sd = desv.std.estatura.m)
paste("La probabilidad de encontrar a una persona masculino que tenga una estatura entre 190 y 195 centímeros es de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino que tenga una estatura entre 190 y 195 centímeros es de: 3.5858 %"
¿Cuál es la probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 180 centímetros?
Graficar la función en donde \(P(x>=180)\)
Gráfica de densidad.
plotDist("norm", mean = media.estatura.f, sd = desv.std.estatura.f, groups = x >= 180, type = "h", xlab = "Estatura Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 180, mean = media.estatura.f, sd = desv.std.estatura.f, lower.tail = FALSE)
paste("La probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 180 de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 180 de: 1.0403 %"
¿Cuál es la probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 190 centímetros?
Graficar la función en donde \(P(x>=190)\)
Gráfica de densidad.
plotDist("norm", mean = media.estatura.f, sd = desv.std.estatura.f, groups = x >= 190, type = "h", xlab = "Estatura Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 190, mean = media.estatura.f, sd = desv.std.estatura.f, lower.tail = FALSE)
paste("La probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 190 de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona femenino que tenga una estatura mayor o igual de 190 de: 0.0062 %"
¿Cuál es la probabilidad de encontrar a una persona femenino que tenga una estatura entre 160 y 170 centímetros?
Graficar la función en donde \(P(160≤x≤170)\)
Gráfica de densidad.
plotDist("norm", mean = media.estatura.f, sd = desv.std.estatura.f, groups = x >= 160 & x <= 170, type = "h", xlab = "Estatura Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 170, mean = media.estatura.f, sd = desv.std.estatura.f) - pnorm(q = 160, mean = media.estatura.f, sd = desv.std.estatura.f)
paste("La probabilidad de encontrar a una persona femenino que tenga una estatura entre 160 y 170 centímeros de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona femenino que tenga una estatura entre 160 y 170 centímeros de: 55.5039 %"
¿Cuál es la probabilidad de encontrar a una persona femenino que tenga una estatura entre 190 y 195 centímetros?
Graficar la función en donde \(P(190≤x≤195)\)
Gráfica de densidad.
plotDist("norm", mean = media.estatura.f, sd = desv.std.estatura.f, groups = x >= 190 & x <= 195, type = "h", xlab = "Estatura Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 195, mean = media.estatura.f, sd = desv.std.estatura.f) - pnorm(q = 190, mean = media.estatura.f, sd = desv.std.estatura.f)
paste("La probabilidad de encontrar a una persona femenino que tenga una estatura entre 190 y 195 centímeros es de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona femenino que tenga una estatura entre 190 y 195 centímeros es de: 0.006 %"
¿Cuál es la probabilidad de encontrar a una persona masculino o femenino que tenga una estatura entre 160 y 170 centímetros?
Graficar la función en donde \(P(160≤x≤170)\)
Gráfica de densidad.
plotDist("norm", mean = mean(datos$estatura), sd = sd(datos$estatura), groups = x >= 160 & x <= 170, type = "h", xlab = "Estatura Hombres y Mujeres", ylab = "Densidad" )
prob <- pnorm(q = 170, mean = mean(datos$estatura), sd = sd(datos$estatura)) - pnorm(q = 160, mean = mean(datos$estatura), sd = sd(datos$estatura))
paste("La probabilidad de encontrar a una persona masculino o femenino que tenga una estatura entre 160 y 170 centímetros? es de:", round(prob * 100,4), "%")
## [1] "La probabilidad de encontrar a una persona masculino o femenino que tenga una estatura entre 160 y 170 centímetros? es de: 33.3526 %"
En este ejercicio se contemplan los registros de estatura, peso y género de una muestra de 507 personas. Se determinan las gráficas de dispersión de datos, los histogramas respecto al peso, las estadísticas referentes a la media del peso masculino, media del peso femenino, y sus desviaciones estándar.
Después se crearon tablas de distribución de los pesos para masculino y femenino, y sus gráficas de densidad, donde se aprecia que los pesos masculinos tienden más a ser cercanos a los 80kg, mientras que en las mujeres tienden a ser ligeramente más de 60kg.
Luego, de igual forma se determinaron la media de estatura y sus desviaciones estándar tanto para género masculino como femenino, se presentan en una tabla de distribución y sus gráficas de densidad muestran una tendencia a poco menos de 180cm en las estaturas masculinas y poco más de 160cm en las femeninas.
Se determinaron las probabilidades de que una persona de género masculino tenga un peso menor o igual a 60kg (4.218%), de que una persona de género femenino tenga un peso menor o igual a 50kg (13.51%), de que una persona de género masculino mida 180cm o más (37.68%), que mida entre 160 y 170cm (13.37%), que mida entre 190 y 195cm (3.58%), que una persona de género femenino mida 180cm o más (1.04%), 190cm o más (0.0062%), que mida entre 160 y 170cm (55.5%), que mida entre 190 y 195cm (0.006%), además de todas y cada una de las gráficas de densidad de cada una de estas situaciones.
Una empresa de material eléctrico fabrica bombillas (focos) de luz que tienen una duración, antes de quemarse (fundirse), que se distribuye normalmente con media igual a 800 horas y una desviación estándar de 40 horas. Encuentre la probabilidad de que una bombilla se queme entre 778 y 834 horas. (walpole_probabilidad_2012?)].
\(μ=800\)
\(σ=40\)
\(P(778≤x≤834)\)
media <- 800
desv.stadandar <- 40
plotDist("norm", mean = media, sd = desv.stadandar, groups = x >= 778 & x <= 834, type = "h", xlab = "Distribución de la duración bombillas (focos)", ylab = "Densidad" )
prob <- pnorm(q = 834, mean = media, sd = desv.stadandar) - pnorm(q = 778, mean = media, sd = desv.stadandar)
paste("La probabilidad de que una bombilla se queme entre 778 y 834 horas es:", round(prob * 100, 4), "%")
## [1] "La probabilidad de que una bombilla se queme entre 778 y 834 horas es: 51.1178 %"
Dado que la probabilidad de el área bajo la curva de una distribución normal es del 100% y solicitan la probabilidad en el intervalo entre 778 y 834, entonces se resta la probabilidad de 834 menos la probabilidad de 778 para encontrar el área bajo la curva de este intervalo de esa variable aleatoria. En la gráfica el color rosa es el área bajo la curva del intérvalo.
La probabilidad de que un foco se funda en un rango entre 778 horas y 834 horas es de 51.1178 %
Los sueldos mensuales en una empresa siguen una distribución normal con media de 1200 soles, y desviación estándar de 200 soles.
¿Qué porcentaje de trabajadores ganan entre 1000 y 1550 soles? (matemovil, n.d.).
Inicializar valores
\(μ=1200\)
\(σ=200\)
\(1000≤x≤1550\)
media <- 1200
desv.stadandar <- 200
plotDist("norm", mean = media, sd = desv.stadandar, groups = x >= 1000 & x <= 1550, type = "h", xlab = "Ganancias de trabajadores en soles", ylab = "Densidad" )
prob <- pnorm(q = 1550, mean = media, sd = desv.stadandar) - pnorm(q = 1000, mean = media, sd = desv.stadandar)
paste("La probabilidad de que una persoan gane entre 1000 y 1550 soles es de:", round(prob * 100, 4), "%")
## [1] "La probabilidad de que una persoan gane entre 1000 y 1550 soles es de: 80.1286 %"
La probabilidad de que una persona gane entre 1000 y 1550 soles es de 80.1286%, que es el porcentaje de trabajadores que ganan en ese intervalo.
matemovil. n.d. “Probabilidad Condicional, Ejercicios Resueltos.” https://matemovil.com/probabilidad-condicional-ejercicios-resueltos/.
UC3M. n.d. “Introducción a La Estadística y Probabilidad.” http://halweb.uc3m.es/esp/Personal/personas/mwiper/docencia/Spanish/Introduction_to_Statistics/intro_continuous2.pdf.
Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012a. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.
———. 2012b. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.