Cargar paquete

library(readr)

Cargar CSV

read_csv("data/gapminder_comas.csv")
## 
## ── Column specification ────────────────────────────────────────────────────────
## cols(
##   country = col_character(),
##   continent = col_character(),
##   year = col_double(),
##   lifeExp = col_double(),
##   pop = col_double(),
##   gdpPercap = col_double()
## )
## # A tibble: 1,704 x 6
##    country     continent  year lifeExp      pop gdpPercap
##    <chr>       <chr>     <dbl>   <dbl>    <dbl>     <dbl>
##  1 Afghanistan Asia       1952    28.8  8425333      779.
##  2 Afghanistan Asia       1957    30.3  9240934      821.
##  3 Afghanistan Asia       1962    32.0 10267083      853.
##  4 Afghanistan Asia       1967    34.0 11537966      836.
##  5 Afghanistan Asia       1972    36.1 13079460      740.
##  6 Afghanistan Asia       1977    38.4 14880372      786.
##  7 Afghanistan Asia       1982    39.9 12881816      978.
##  8 Afghanistan Asia       1987    40.8 13867957      852.
##  9 Afghanistan Asia       1992    41.7 16317921      649.
## 10 Afghanistan Asia       1997    41.8 22227415      635.
## # … with 1,694 more rows

Asignar nombre a los datos

datos_obtenidos_csv <- read_csv("data/gapminder_comas.csv")
## 
## ── Column specification ────────────────────────────────────────────────────────
## cols(
##   country = col_character(),
##   continent = col_character(),
##   year = col_double(),
##   lifeExp = col_double(),
##   pop = col_double(),
##   gdpPercap = col_double()
## )
datos_obtenidos_csv
## # A tibble: 1,704 x 6
##    country     continent  year lifeExp      pop gdpPercap
##    <chr>       <chr>     <dbl>   <dbl>    <dbl>     <dbl>
##  1 Afghanistan Asia       1952    28.8  8425333      779.
##  2 Afghanistan Asia       1957    30.3  9240934      821.
##  3 Afghanistan Asia       1962    32.0 10267083      853.
##  4 Afghanistan Asia       1967    34.0 11537966      836.
##  5 Afghanistan Asia       1972    36.1 13079460      740.
##  6 Afghanistan Asia       1977    38.4 14880372      786.
##  7 Afghanistan Asia       1982    39.9 12881816      978.
##  8 Afghanistan Asia       1987    40.8 13867957      852.
##  9 Afghanistan Asia       1992    41.7 16317921      649.
## 10 Afghanistan Asia       1997    41.8 22227415      635.
## # … with 1,694 more rows

Leer TSV

En el siguiente chunk estoy leyendo mis datos TSV. Para ello uso la función read_tsv.

datos_obtenidos_tsv <- read_tsv("data/gapminder_tabs.tsv")
## 
## ── Column specification ────────────────────────────────────────────────────────
## cols(
##   country = col_character(),
##   continent = col_character(),
##   year = col_double(),
##   lifeExp = col_double(),
##   pop = col_double(),
##   gdpPercap = col_double()
## )
datos_obtenidos_tsv
## # A tibble: 1,704 x 6
##    country     continent  year lifeExp      pop gdpPercap
##    <chr>       <chr>     <dbl>   <dbl>    <dbl>     <dbl>
##  1 Afghanistan Asia       1952    28.8  8425333      779.
##  2 Afghanistan Asia       1957    30.3  9240934      821.
##  3 Afghanistan Asia       1962    32.0 10267083      853.
##  4 Afghanistan Asia       1967    34.0 11537966      836.
##  5 Afghanistan Asia       1972    36.1 13079460      740.
##  6 Afghanistan Asia       1977    38.4 14880372      786.
##  7 Afghanistan Asia       1982    39.9 12881816      978.
##  8 Afghanistan Asia       1987    40.8 13867957      852.
##  9 Afghanistan Asia       1992    41.7 16317921      649.
## 10 Afghanistan Asia       1997    41.8 22227415      635.
## # … with 1,694 more rows

Leer delimitar arbitrario

datos_obtenidos_michi <- read_delim("data/gapminder_michi.txt", delim = "#")
## 
## ── Column specification ────────────────────────────────────────────────────────
## cols(
##   country = col_character(),
##   continent = col_character(),
##   year = col_double(),
##   lifeExp = col_double(),
##   pop = col_double(),
##   gdpPercap = col_double()
## )
datos_obtenidos_michi 
## # A tibble: 1,704 x 6
##    country     continent  year lifeExp      pop gdpPercap
##    <chr>       <chr>     <dbl>   <dbl>    <dbl>     <dbl>
##  1 Afghanistan Asia       1952    28.8  8425333      779.
##  2 Afghanistan Asia       1957    30.3  9240934      821.
##  3 Afghanistan Asia       1962    32.0 10267083      853.
##  4 Afghanistan Asia       1967    34.0 11537966      836.
##  5 Afghanistan Asia       1972    36.1 13079460      740.
##  6 Afghanistan Asia       1977    38.4 14880372      786.
##  7 Afghanistan Asia       1982    39.9 12881816      978.
##  8 Afghanistan Asia       1987    40.8 13867957      852.
##  9 Afghanistan Asia       1992    41.7 16317921      649.
## 10 Afghanistan Asia       1997    41.8 22227415      635.
## # … with 1,694 more rows