1 List of Mergers

files = paste0("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/Ultimate Panel Data/",as.character(2000:2016),".fst")

panel = lapply(files, read_fst, as.data.table = TRUE,columns=c("respondentid","agencycode","reportername","asofdate","parentname","parentidentifier","reporterhomecity","reporterhomestate","rssd"))
panel <- do.call(rbind , panel)

panel[,asofdate:=as.integer(asofdate)]
panel <- panel[!duplicated(panel[,c("respondentid","agencycode","asofdate")])]
panel[,parentidentifier:=stri_trim(parentidentifier)]

panel[,rssd:=as.numeric(rssd)]

panel[,hmda_id:=paste0(agencycode,"-",respondentid)]

files <- NULL
files  <- list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/pre2004/OO_NP/",full.names = TRUE)
files  <- c(files,list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/pre2004/OO_RF/",full.names = TRUE))
files  <- c(files,list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/OO_NP/",full.names = TRUE))
files  <- c(files,list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/OO_RF/",full.names = TRUE))

hmda = lapply(files, read_fst, as.data.table = TRUE,
              columns=c("asofdate","respondentid","agencycode","state","countycode","msa"))
hmda <- do.call(rbind , hmda)
hmda[,lender:=paste0(agencycode,"-",respondentid)]
hmda[,countycode:=paste0(state,countycode)]


cbsa_fips <- fread("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Crosswalk Files/cbsa_countyfips.csv")
cbsa_fips[,fips:=ifelse(nchar(fips)==4,paste0("0",fips),paste0(fips))]

hmda <- merge(hmda,cbsa_fips,by.x="countycode",by.y="fips",all.x=T)
hmda[,c("agencycode","respondentid"):=list(NULL)]

gc()
##              used    (Mb) gc trigger    (Mb)   max used    (Mb)
## Ncells    2089076   111.6    3909500   208.8    2933368   156.7
## Vcells 2223686899 16965.4 6908873884 52710.6 7104844214 54205.7
mergers <- list()

temp <- list(1,"BANK ONE - JPMORGAN CHASE 2004",
             c("1-0000000008","1-0000007621","1-0000003106","1-0000011230","1-0000013655","1-0000013759","1-0000013914","1-0000014320","1-0000015184","1-0000018785","1-0000021969","1-0000023237","2-0000331647","3-0000002487"),
             unique(c(unique(panel[parentidentifier %in% c("0000002370","0000000008","0001039502","0000852218","0001040795"),]$hmda_id),"2-0000852218","1-0000023160","2-0000043557","1-22-1092200","1-0000000008")),
             2000,"JPMORGAN CHASE BANK, NA",2004)
mergers[[1]] <- temp

temp <- list(2,"COUNTRYWIDE - BANK OF AMERIC 2009" ,c("1-0000024141","2-0001644643","2-0003267484","7-20-2241771","1-0000024141","4-0000018039"),c("1-0000013044"),
             2005,"BANK OF AMERICA, N.A.",2009)
mergers[[2]] <- temp

temp <- list(3,"FLEET NA - BANK OF AMERICA 2005",c("1-0000000200"),c("1-0000013044"),
             2003,"BANK OF AMERICA, N.A.",2005)
mergers[[3]] <- temp

temp <- list(4,"WACHOVIA BK NA - WELLS FARGO 2010", c("1-0000000001","1-0000022559","1-56-0811711"), panel[substr(reportername,1,7)=="WELLS F"]$hmda_id,
             2005,"WELLS FARGO BANK, N.A.",2009)
mergers[[4]] <- temp

temp <- list(5,"LASALLE BK - BANK OF AMERICA 2008",panel[substr(reportername,1,7)=="LASALLE" & asofdate<=2005]$hmda_id,c("1-0000013044"),
             2005,"BANK OF AMERICA, N.A.",2008)
mergers[[5]] <- temp


temp <- list(6,"ABN AMRO MTG GROUP - CITI BANK 2007",c("1-36-3744610"),unique(panel[parentidentifier=="0001951350"]$hmda_id),
             2004,"CITIMORTGAGE, INC.",2007)
mergers[[6]] <- temp

temp <- list(7,"UNION PLANTERS BANK - REGIONS FINANCIAL CORP 2004",
             c("1-0000013349"),
             c("9-0000233031","2-0000233031"),
             2002,c("REGIONS BANK"),2004)
mergers[[7]] <- temp

temp <- list(8,"AmSouth Bancorporation - REGIONS FINANCIAL CORP 2006",
             c("2-0000245333"),
             c("9-0000233031","2-0000233031"),
             2004,c("REGIONS BANK"),2006)
mergers[[8]] <- temp


temp <- list(9,"Washington Mutual - JPMORGAN CHASE 2008",
             c("4-0000008551","4-0000011905"),
             unique(c(unique(panel[parentidentifier %in% c("0000002370","0000000008","0001039502","0000852218","0001040795"),]$hmda_id),"2-0000852218","1-0000023160","2-0000043557","1-22-1092200","1-0000000008")),
             2005,"JPMORGAN CHASE BANK, NA",
             2008)
mergers[[9]] <- temp



## target operated in 5 msas; small share.
temp <- list(10,"Greater Bay Bank - Wells Fargo 2007",
             c("1-0000024489"),
             panel[substr(reportername,1,7)=="WELLS F"]$hmda_id,
             2005,c("WELLS FARGO BANK, N.A."),2007)
mergers[[10]] <- temp


temp <- list(11,"MBNA NA - BANK OF AMERICA 2005",c("1-0000024095"),c("1-0000013044"),
             2003,"BANK OF AMERICA, N.A.",2005)
mergers[[11]] <- temp

temp <- list(12,"Merrill Lynch - BANK OF AMERICA 2008",c("2-0000421203","7-13-3403204","3-13-3098068","3-13-3399559","3-0000027374","3-0000091363","3-13-3399559","4-0000014460","3-68-0518519","4-0000014460", "4-0133098068"),c("1-0000013044"),
             2005,"BANK OF AMERICA, N.A.",2008)
mergers[[12]] <- temp


temp <- list(13,"FIRST INTERSTATE BK CA  - Wells Fargo 1996",c("2-0000669667"),panel[substr(reportername,1,7)=="WELLS F"]$hmda_id,1994,"WELLS FARGO BANK, N.A.",1996)
mergers[[13]] <- temp

temp <- list(14,"PACIFIC NORTHWEST  - Wells Fargo 2004",c("3-0000030887","3-0000027346"),panel[substr(reportername,1,7)=="WELLS F"]$hmda_id,
             2002,"WELLS FARGO BANK, N.A.",2004)
mergers[[14]] <- temp


temp <- list(15,"MERIDIAN MOME MORTGAGE, LP  - Wells Fargo 2010",c("1-74-3082948"),panel[substr(reportername,1,7)=="WELLS F"]$hmda_id,
             2005,"WELLS FARGO BANK, N.A.",2010)
mergers[[15]] <- temp


temp <- list(16,"The Leader Mtg Co - US Bank 2004",
             c("7-3814209995"),
             panel[substr(reportername,1,5)=="U S B"]$hmda_id,
             2002,c("U.S. BANK N.A."),2004)
mergers[[16]] <- temp

temp <- list(17,"PFF BANK & TRUST  - US Bank 2008",
             c("4-0000001405"),
             panel[substr(reportername,1,5)=="U S B"]$hmda_id,
             2005,c("U.S. BANK N.A."),2008)
mergers[[17]] <- temp


temp <- list(18,"DOWNEY SAVINGS AND LOAN ASSOCIATION, F.A.   - US Bank 2008",
             c("4-0000006189"),
             panel[substr(reportername,1,5)=="U S B"]$hmda_id,
             2005,c("U.S. BANK N.A."),2008)
mergers[[18]] <- temp


cbsas <- unique(hmda$cbsa)
yrs <- 2000:2016
acqbanks <- NULL
for(i in 1:length(mergers)) {
  acqbanks <- c(acqbanks,mergers[[i]][6][[1]])
}
acqbanks <- c(unique(acqbanks),"other")

cbsas1 <- merge(cbsas,yrs)
cbsas2 <- merge(cbsas,acqbanks)

cbsas <- merge(cbsas1,cbsas2,by="x")
names(cbsas) <- c("cbsa","acyr","bank")
cbsas <- data.table(cbsas)

cbsas[,bank:=as.character(bank)]
cbsas[,acqbank:=0]
cbsas[,pred_share:=0]
cbsas[,suc_share:=0]


cbsa_bnk <- NULL
lender_bank <- NULL
sumtable <- NULL
for(i in 1:length(mergers)) {
  # print(i)
  mid=mergers[[i]][1][[1]]
  mname=mergers[[i]][2][[1]]
  pred_hmda_id=mergers[[i]][3][[1]]
  suc_hmda_id=mergers[[i]][4][[1]]
  yr=mergers[[i]][5][[1]]
  acname = mergers[[i]][6][[1]]
  acyr = mergers[[i]][7][[1]]

  temp <- hmda[asofdate == yr ]
  temp[,pred:=ifelse(lender %in% pred_hmda_id,1,0)]
  cw <- temp[,.(pred_share=mean(pred)),by=.(cbsa)]
  
  temp1 <- hmda[asofdate == (acyr-1) ]
  temp1[,suc:=ifelse(lender %in% suc_hmda_id,1,0)]
  cw1 <- temp1[,.(suc_share=mean(suc)),by=.(cbsa)]
  
  cw <- merge(cw,cw1,by="cbsa",all.x=T)
  cw <- cw[!is.na(cbsa)]
  cw[is.na(cw)] <- 0
  
  cw[,joint_share:=pred_share+suc_share]
  cw[,bank:=acname]
  cw[,acyr:=acyr]

  cw[,c("joint_share"):=list(NULL)]
  cbsa_bnk <- rbind(cbsa_bnk,cw)
}


cbsa_bnk[,acqbank:=1]


cbsa_bnk <- rbind(cbsa_bnk,cbsas)
cbsa_bnk <- cbsa_bnk[!duplicated(cbsa_bnk[,c("cbsa","acyr","bank")])]
cbsa_bnk <- cbsa_bnk[!is.na(cbsa)]


cbsa_bnk_1 <- cbsa_bnk[,c("cbsa","pred_share","bank","acyr")]

names(cbsa_bnk_1) <- c("cbsa","pred_share_1","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_2","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_3","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_4","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_5","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_6","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_7","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_8","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_9","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

cbsa_bnk[,pred_share_1:=ifelse(is.na(pred_share_1),0,pred_share_1)]
cbsa_bnk[,pred_share_2:=ifelse(is.na(pred_share_2),0,pred_share_2)]
cbsa_bnk[,pred_share_3:=ifelse(is.na(pred_share_3),0,pred_share_3)]
cbsa_bnk[,pred_share_4:=ifelse(is.na(pred_share_4),0,pred_share_4)]
cbsa_bnk[,pred_share_5:=ifelse(is.na(pred_share_5),0,pred_share_5)]
cbsa_bnk[,pred_share_6:=ifelse(is.na(pred_share_6),0,pred_share_6)]
cbsa_bnk[,pred_share_7:=ifelse(is.na(pred_share_7),0,pred_share_7)]
cbsa_bnk[,pred_share_8:=ifelse(is.na(pred_share_8),0,pred_share_8)]
cbsa_bnk[,pred_share_9:=ifelse(is.na(pred_share_9),0,pred_share_9)]

cbsa_bnk[,msinc13:=pred_share_1+pred_share_2+pred_share_3+0.00001]
cbsa_bnk[,msinc46:=pred_share_4+pred_share_5+pred_share_6+0.00001]
cbsa_bnk[,msinc79:=pred_share_7+pred_share_8+pred_share_9+0.00001]
 

cbsa_bnk[,msinc13G:=ifelse(msinc13<=0.0001,"0. 0",
                           ifelse(msinc13<0.01,"1. Less than 1pct",
                           ifelse(msinc13<0.05,"2. 1 - 5pct",
                                  ifelse(msinc13<0.1,"3. 5pct - 10pct", "4. More than 10pct"))))]

cbsa_bnk[,msinc46G:=ifelse(msinc46<=0.0001,"0. 0",
                           ifelse(msinc46<0.01,"1. Less than 1pct",
                           ifelse(msinc46<0.05,"2. 1 - 5pct",
                                  ifelse(msinc46<0.1,"3. 5pct - 10pct", "4. More than 10pct"))))]


cbsa_bnk[,msinc79G:=ifelse(msinc79<=0.0001,"0. 0",
                           ifelse(msinc79<0.01,"1. Less than 1pct",
                           ifelse(msinc79<0.05,"2. 1 - 5pct",
                                  ifelse(msinc79<0.1,"3. 5pct - 10pct", "4. More than 10pct"))))]
freddie <- list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Freddie/Acq",full.names = TRUE)
freddie = lapply(freddie, read_fst,as.data.table=T, columns = c("fico","dt_first_pi","cd_msa","ltv","dti","orig_upb","int_rt","prop_type","zipcode","id_loan","orig_loan_term","seller_name","loan_purpose","cltv"))
freddie <- do.call(rbind , freddie)

freddie <- freddie[orig_loan_term==360 & prop_type=="SF"]
freddie[,loanyr:=year(dt_first_pi)]
freddie[,msa:=cd_msa]
freddie[,c("orig_loan_term","dt_first_pi","prop_type","cd_msa"):=list(NULL)]
freddie[,seller_name:= ifelse(seller_name %in% c("JPMORGAN CHASE BANK, NA","JPMORGAN CHASE BANK, NATIONAL ASSOCIATION","CHASE MANHATTAN MORTGAGE CORPORATION","CHASE HOME FINANCE LLC","CHASE HOME FINANCE","CHASE HOME FINANCE, LLC","JPMORGAN CHASE BANK, NATIONAL ASSOCIATION","JPMORGAN CHASE BANK, N.A."),"JPMORGAN CHASE BANK, NA",seller_name)]
freddie[,seller_name:= ifelse(seller_name %in%  c("CITIMORTGAGE, INC.","ABN AMRO, NKA CITIMORTGAGE INC.","CITIMORTGAGE, INC."),"CITIMORTGAGE, INC.",seller_name)]
freddie[,seller_name:= ifelse(seller_name %in% c("WELLS FARGO HOME MORTGAGE, INC.","WELLS FARGO BANK, N.A."),"WELLS FARGO BANK, N.A.",seller_name)]

freddie[,bank:=seller_name]
freddie[,bank:=ifelse(bank %in% unique(cbsa_bnk$bank),bank,"other")]
freddie[,freddie:=1]
freddie[,newpurchase:=ifelse(loan_purpose=="P",1,0)]
freddie[,ltvorg:=ltv]
freddie[,ltv:=cltv]
fannie <- list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Fannie/Acq",full.names = TRUE)
fannie = lapply(fannie, read_fst,as.data.table=T, columns = c("loan_identifier","seller_name","original_interest_rate","original_upb","original_loan_term","origination_date","original_ltv","original_dti","credit_score","property_type","property_state","zip_code","msa","loan_purpose","original_cltv"))
fannie <- do.call(rbind , fannie)

fannie <- fannie[original_loan_term==360 & property_type=="SF"]
fannie[,loanyr:=year(origination_date)]
fannie[,seller_name:= ifelse(seller_name %in% c("JPMORGAN CHASE BANK, NA","JPMORGAN CHASE BANK, NATIONAL ASSOCIATION","CHASE MANHATTAN MORTGAGE CORPORATION","CHASE HOME FINANCE LLC","CHASE HOME FINANCE","CHASE HOME FINANCE, LLC","JPMORGAN CHASE BANK, NATIONAL ASSOCIATION","JPMORGAN CHASE BANK, N.A."),"JPMORGAN CHASE BANK, NA",seller_name)]
fannie[,seller_name:= ifelse(seller_name %in%  c("CITIMORTGAGE, INC.","ABN AMRO, NKA CITIMORTGAGE INC.","CITIMORTGAGE, INC."),"CITIMORTGAGE, INC.",seller_name)]
fannie[,seller_name:= ifelse(seller_name %in% c("WELLS FARGO HOME MORTGAGE, INC.","WELLS FARGO BANK, N.A."),"WELLS FARGO BANK, N.A.",seller_name)]

fannie[,bank:=seller_name]
fannie[,bank:=ifelse(bank %in% unique(cbsa_bnk$bank),bank,"other")]
fannie[,freddie:=0]
fannie[,ltvorg:=original_ltv]
setnames(fannie,"zip_code","zipcode")
setnames(fannie,"original_ltv","ltv")
setnames(fannie,"original_upb","orig_upb")
setnames(fannie,"original_interest_rate","int_rt")
setnames(fannie,"loan_identifier","id_loan")
setnames(fannie,"credit_score","fico")
setnames(fannie,"original_dti","dti")
setnames(fannie,"original_cltv","cltv")

fannie[,c("property_type","property_state","original_loan_term","origination_date"):=list(NULL)]
fannie[,loan_purpose:=ifelse(loan_purpose=="R","N",loan_purpose)]

fannie <- fannie[loan_purpose != "U"]
fannie[,id_loan:=as.character(id_loan)]

fannie[,newpurchase:=ifelse(loan_purpose=="P",1,0)]
fannie[,ltv:=cltv]
moodys <- read_fst("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Moodys/0001/LoanChars.fst",as.data.table = TRUE, columns=c("loanid","loanoriginationdate","zipcode","originalloanbalance","originalcltv","state","originator","armflag","originalfico","originalterm","originalltv","documentationtype","originalinterestrate","purposetype","assettype")) 

cbsa <- fread("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Crosswalk Files/ZIP_CBSA.csv")
cbsa[,ZIP:=ifelse(nchar(ZIP)==3,paste0("00",ZIP),ifelse(nchar(ZIP)==4,paste0("0",ZIP),paste0(ZIP)))]
setorder(cbsa,ZIP,-RES_RATIO)
cbsa <- cbsa[!duplicated(cbsa[,c("ZIP")])]
cbsa[,c("RES_RATIO","BUS_RATIO","OTH_RATIO","TOT_RATIO"):=list(NULL)]
names(cbsa) <- c("zipcode","msa")
moodys <- merge(moodys,cbsa,by=c("zipcode"))

# moodys <- moodys[originalterm==360 & armflag=="F"]
moodys[,loanyr:=as.numeric(substr(loanoriginationdate,1,4))]
moodys[,seller_name:= originator]
moodys[,seller_name:= ifelse(seller_name %in% c("JPMORGAN CHASE BANK, NA","JPMORGAN CHASE BANK, NATIONAL ASSOCIATION","CHASE MANHATTAN MORTGAGE CORPORATION","CHASE HOME FINANCE LLC","CHASE HOME FINANCE","CHASE HOME FINANCE, LLC","JPMORGAN CHASE BANK, NATIONAL ASSOCIATION","JPMORGAN CHASE BANK, N.A.","JP MORGAN CHASE BANK NA","CHASE MANHATTAN MORTGAGE CORP"),"JPMORGAN CHASE BANK, NA",seller_name)]
moodys[,seller_name:= ifelse(seller_name %in%  c("B OF A"),"BANK OF AMERICA, N.A.",seller_name)]
moodys[,seller_name:= ifelse(seller_name %in% c("WELLS FARGO HOME MORTGAGE, INC.","WELLS FARGO BANK, N.A.","WELLS FARGO BANK N.A"," WELLS FARGO HOME MTG, INC"),"WELLS FARGO BANK, N.A.",seller_name)]

moodys[,int_rt:=originalinterestrate]
moodys[,dti:=0]
moodys[,ltv:=originalcltv]
moodys[,ltvorg:=originalltv]
moodys[,fico:=originalfico]
moodys[,orig_upb:= originalloanbalance]

# moodys[,c("originalinterestrate","originalltv","originalfico","originalloanbalance","msacode","csacode","divcode","loanoriginationdate","armflag","originalterm"):=list(NULL)]

moodys[,fulldocumentation:=ifelse(documentationtype=="FU",1,0)]
gc()
##              used    (Mb) gc trigger    (Mb)   max used    (Mb)
## Ncells   38746475  2069.3   58616007  3130.5   40152965  2144.4
## Vcells 3593570659 27416.8 6908873884 52710.6 7104844214 54205.7
moodys[,bank:=seller_name]
moodys[,bank:=ifelse(bank %in% unique(cbsa_bnk$bank),bank,"other")]
moodys[,newpurchase:=ifelse(purposetype=="PUR",1,0)]

moodys <- moodys[assettype != "UN"]

2 Table 2 - Panel A - Freddie Mac Sample

vars <- c("fico","ltv","dti","orig_upb","int_rt","loanyr","newpurchase")
covlabs <- c("FICO Score", "Combined loan-to-value","Debt-to-income","Loan amount","Interest rate","Origination year","New purchase")

stargazer(freddie[,..vars],type="text",summary.stat = c("N","mean","sd","p25","median","p75"), covariate.labels = covlabs)
## 
## ===================================================================================
## Statistic                  N         Mean      St. Dev.   Pctl(25) Median  Pctl(75)
## -----------------------------------------------------------------------------------
## FICO Score             16,245,111   748.509     395.911     695      741     776   
## Combined loan-to-value 16,245,111   74.400      17.381       67      79       85   
## Debt-to-income         16,245,111   47.668      113.969      26      35       43   
## Loan amount            16,245,111 189,852.800 107,056.600 111,000  165,000 245,000 
## Interest rate          16,245,111    5.699       1.234     4.750    5.875   6.625  
## Origination year       16,245,111  2,007.242     5.630     2,003    2,006   2,012  
## New purchase           16,245,111    0.420       0.494       0        0       1    
## -----------------------------------------------------------------------------------

3 Table 2 - Panel B - Fannie Mae Sample

vars <- c("fico","ltv","dti","orig_upb","int_rt","loanyr","newpurchase")

stargazer(fannie[,..vars],type="text",summary.stat = c("N","mean","sd","p25","median","p75"),
          covariate.labels = covlabs)
## 
## ===================================================================================
## Statistic                  N         Mean      St. Dev.   Pctl(25) Median  Pctl(75)
## -----------------------------------------------------------------------------------
## FICO Score             20,256,524   736.426     54.519    700.000  747.000 781.000 
## Combined loan-to-value 20,136,791   74.006      16.287     66.000  78.000   84.000 
## Debt-to-income         19,924,305   34.426      11.429     26.000  35.000   42.000 
## Loan amount            20,348,007 197,397.000 111,678.300 115,000  172,000 254,000 
## Interest rate          20,348,004    5.542       1.240     4.500    5.625   6.375  
## Origination year       20,348,007  2,007.760     5.680     2,003    2,007   2,013  
## New purchase           20,348,007    0.410       0.492       0        0       1    
## -----------------------------------------------------------------------------------

4 Table 3 - Panel C - Moody’s Sample

4.1 All Loans

vars <- c("fico","ltv","dti","orig_upb","int_rt","loanyr","fulldocumentation","newpurchase")

temp <- moodys[ originalterm==360 & armflag=="F"]

covlabs <- c("FICO Score", "Combined loan-to-value","Loan amount","Interest rate","Origination year","Full documentation","New purchase")

stargazer(temp[,c("fico","ltv","orig_upb","int_rt","loanyr","fulldocumentation","newpurchase")],type="text",summary.stat = c("N","mean","sd","p25","median","p75"),covariate.labels = covlabs)
## 
## ===========================================================================================
## Statistic                  N        Mean      St. Dev.    Pctl(25)    Median     Pctl(75)  
## -------------------------------------------------------------------------------------------
## FICO Score             3,931,302   681.319     69.930     632.000     684.000     737.000  
## Combined loan-to-value 3,701,324   80.358      17.069      72.040     80.000      95.000   
## Loan amount            4,084,713 236,227.000 217,261.500 87,000.000 162,900.000 342,000.000
## Interest rate          4,083,067    7.376       2.070      6.125       6.875       8.250   
## Origination year       4,076,804  2,004.672     2.223    2,004.000   2,005.000   2,006.000 
## Full documentation     4,085,004    0.407       0.491        0           0           1     
## New purchase           4,085,004    0.412       0.492        0           0           1     
## -------------------------------------------------------------------------------------------

4.2 Prime Loans

vars <- c("fico","ltv","dti","orig_upb","int_rt","loanyr","fulldocumentation","newpurchase")

temp <- moodys[assettype=="Prime" & originalterm==360 & armflag=="F"]

stargazer(temp[,c("fico","ltv","orig_upb","int_rt","loanyr","fulldocumentation","newpurchase")],type="text",summary.stat = c("N","mean","sd","p25","median","p75"),covariate.labels = covlabs)
## 
## ============================================================================================
## Statistic                  N        Mean      St. Dev.    Pctl(25)     Median     Pctl(75)  
## --------------------------------------------------------------------------------------------
## FICO Score             2,158,190   726.768     41.403      691.000     725.000     760.000  
## Combined loan-to-value 1,990,839   79.131      17.441      70.000      80.000      94.930   
## Loan amount            2,195,652 298,550.900 249,089.600 113,000.000 231,900.000 441,000.000
## Interest rate          2,195,442    6.957       1.772       6.000       6.500       7.375   
## Origination year       2,195,370  2,004.765     2.208     2,004.000   2,005.000   2,006.000 
## Full documentation     2,195,857    0.387       0.487         0           0           1     
## New purchase           2,195,857    0.463       0.499         0           0           1     
## --------------------------------------------------------------------------------------------

4.3 Alt-A Loans

temp <- moodys[assettype=="Alt-A" & originalterm==360 & armflag=="F"]

stargazer(temp[,c("fico","ltv","orig_upb","int_rt","loanyr","fulldocumentation","newpurchase")],type="text",summary.stat = c("N","mean","sd","p25","median","p75"),covariate.labels = covlabs)
## 
## =========================================================================================
## Statistic                 N       Mean      St. Dev.    Pctl(25)    Median     Pctl(75)  
## -----------------------------------------------------------------------------------------
## FICO Score             836,480   660.313     41.997     633.000     647.000     663.000  
## Combined loan-to-value 788,635   82.385      16.836      75.000     82.900      98.000   
## Loan amount            869,952 186,927.700 165,143.600 76,000.000 138,000.000 245,000.000
## Interest rate          869,542    7.617       2.229      6.250       7.000       8.825   
## Origination year       866,808  2,004.815     2.023    2,004.000   2,005.000   2,006.000 
## Full documentation     869,955    0.361       0.480        0           0           1     
## New purchase           869,955    0.396       0.489        0           0           1     
## -----------------------------------------------------------------------------------------

4.4 Subprime Loans

temp <- moodys[assettype=="Subprime" & originalterm==360 & armflag=="F"]

stargazer(temp[,c("fico","ltv","orig_upb","int_rt","loanyr","fulldocumentation","newpurchase")],type="text",summary.stat = c("N","mean","sd","p25","median","p75"),covariate.labels = covlabs)
## 
## ===========================================================================================
## Statistic                  N        Mean      St. Dev.    Pctl(25)    Median     Pctl(75)  
## -------------------------------------------------------------------------------------------
## FICO Score              936,632    595.358     49.573     566.000     596.000     616.000  
## Combined loan-to-value  921,850    81.273      16.209      74.850     80.000      95.000   
## Loan amount            1,019,109 144,035.000 115,299.700 67,000.000 111,200.000 185,000.000
## Interest rate          1,018,083    8.073       2.293      6.750       7.875       9.550   
## Origination year       1,014,626  2,004.349     2.380    2,004.000   2,005.000   2,006.000 
## Full documentation     1,019,192    0.490       0.500        0           0           1     
## New purchase           1,019,192    0.318       0.466        0           0           1     
## -------------------------------------------------------------------------------------------

5 Figure 3 - Panel A

print(ggplot(cbsa_bnk[msinc13>0.00001],aes(x=msinc13*100))+geom_histogram(fill="royalblue",alpha=0.3,color="royalblue")+theme_minimal()+labs(x=bquote(MSAcq^{1-3}~"(%)"),y="Frequency")+scale_y_continuous(labels = function(x) format(x, big.mark = ",",scientific = FALSE)))

6 Figure 3 - Panel B

print(ggplot(cbsa_bnk[msinc46>0.00001],aes(x=msinc46*100))+geom_histogram(fill="royalblue",alpha=0.3,color="royalblue")+theme_minimal()+labs(x=bquote(MSAcq^{4-6}~"(%)"),y="Frequency")+scale_y_continuous(labels = function(x) format(x, big.mark = ",",scientific = FALSE)))

7 Table 4 - Panel A - Effect of Mergers on Interest Rate

7.1 Bank-MSA and Year FE

regsample <- rbind(freddie,fannie)

regsample <- merge(regsample,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]


  r <- list()
  r[[1]] <- felm(int_rt~msinc13+msinc46+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|bank_msa+loanyr|0|msa,data=regsample)

  r[[2]] <- felm(int_rt~newpurchase*msinc13+newpurchase*msinc46+fico+ltv+dti+log(orig_upb)+freddie|bank_msa+loanyr|0|msa,data=regsample)
  
  r[[3]] <- felm(int_rt~msinc13+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|bank_msa+loanyr|0|msa,data=regsample[loanyr<=2007])

  r[[4]] <- felm(int_rt~newpurchase*msinc13+fico+ltv+dti+log(orig_upb)+freddie|bank_msa+loanyr|0|msa,data=regsample[loanyr<=2007])
  
  

regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
# regsample[,yr_msa:=paste(loanyr,msa)]

  r[[5]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F"])  
  r[[6]] <- felm(int_rt~newpurchase*msinc13+fico+ltv+fulldocumentation+log(orig_upb)+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F"])
  

covlabs <- c("MSAcq1-3","MSAcq4-6","FICO score","Loan-to-value","Debt-to-income","Full documentation","log(Loan amount)","Freddie Mac","New purchase*MSAcq1-3","New purchase*MSAcq4-6","New purchase","Alt-A","Subprime")

stargazer(r,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,type="text",covariate.labels = covlabs,
          column.labels=c("GSE Sample","GSE Sample (<2008)","Non-agency sample"),column.separate=c(2,2,2),
          add.lines = list(c("Bank*MSA", rep("Y",6)),c("Year", rep("Y",6))))
## 
## =======================================================================================
##                            GSE Sample         GSE Sample (<2008)     Non-agency sample 
##                          (1)        (2)         (3)         (4)        (5)       (6)   
## ---------------------------------------------------------------------------------------
## MSAcq1-3               0.770***   0.872***   0.498***    1.120***   8.386***  11.463***
##                        (0.047)    (0.061)     (0.146)     (0.171)    (1.739)   (1.709) 
## MSAcq4-6               0.240***    0.179*                                              
##                        (0.086)    (0.106)                                              
## FICO score            -0.0001*** -0.0001*** -0.00003*** -0.00003*** -0.003*** -0.003***
##                       (0.00001)  (0.00001)   (0.00000)   (0.00000)  (0.0001)  (0.0001) 
## Loan-to-value          0.004***   0.004***   0.004***    0.004***   0.017***  0.017*** 
##                        (0.0001)   (0.0001)   (0.0001)    (0.0001)    (0.001)   (0.001) 
## Debt-to-income        0.0001***  0.0001***   0.0001***   0.0001***                     
##                       (0.00001)  (0.00001)   (0.00001)   (0.00001)                     
## Full documentation                                                  -0.224*** -0.224***
##                                                                      (0.010)   (0.010) 
## log(Loan amount)      -0.228***  -0.228***   -0.236***   -0.236***  -1.090*** -1.089***
##                        (0.006)    (0.006)     (0.005)     (0.005)    (0.018)   (0.018) 
## Freddie Mac            0.045***   0.045***   0.052***    0.052***                      
##                        (0.002)    (0.002)     (0.003)     (0.003)                      
## New purchase*MSAcq1-3            -0.260***               -1.504***            -7.658***
##                                   (0.062)                 (0.122)              (0.837) 
## New purchase*MSAcq4-6              0.150                                               
##                                   (0.113)                                              
## New purchase           0.025***   0.025***   0.015***    0.016***   0.123***  0.125*** 
##                        (0.004)    (0.004)     (0.003)     (0.003)    (0.020)   (0.020) 
## Alt-A                                                               0.110***  0.110*** 
##                                                                      (0.007)   (0.007) 
## Subprime                                                            0.409***  0.409*** 
##                                                                      (0.014)   (0.014) 
## Bank*MSA                  Y          Y           Y           Y          Y         Y    
## Year                      Y          Y           Y           Y          Y         Y    
## N                     23,793,279 23,793,279 13,622,426  13,622,426  3,026,530 3,026,530
## Adjusted R2             0.896      0.896       0.751       0.751      0.483     0.483  
## =======================================================================================

7.2 Year-MSA and Bank FE

regsample <- rbind(freddie,fannie)

regsample <- merge(regsample,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,yr_msa:=paste(loanyr,msa)]

  r <- list()
  r[[1]] <- felm(int_rt~msinc13+msinc46+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|seller_name+yr_msa|0|yr_msa,data=regsample)

  r[[2]] <- felm(int_rt~newpurchase*msinc13+newpurchase*msinc46+fico+ltv+dti+log(orig_upb)+freddie|seller_name+yr_msa|0|yr_msa,data=regsample)
  
  r[[3]] <- felm(int_rt~msinc13+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|seller_name+yr_msa|0|yr_msa,data=regsample[loanyr<=2007])

  r[[4]] <- felm(int_rt~newpurchase*msinc13+fico+ltv+dti+log(orig_upb)+freddie|seller_name+yr_msa|0|yr_msa,data=regsample[loanyr<=2007])
  
  

regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
regsample[,yr_msa:=paste(loanyr,msa)]

  r[[5]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|seller_name+yr_msa|0|msa,data=regsample[originalterm==360 & armflag=="F"])  
  r[[6]] <- felm(int_rt~newpurchase*msinc13+fico+ltv+fulldocumentation+log(orig_upb)+factor(assettype)|seller_name+yr_msa|0|msa,data=regsample[originalterm==360 & armflag=="F"])
  
stargazer(r,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,type="text",covariate.labels = covlabs,
          column.labels=c("GSE Sample","GSE Sample (<2008)","Non-agency sample"),column.separate=c(2,2,2),
          add.lines = list(c("Year*MSA", rep("Y",6)),c("Bank", rep("Y",6))))
## 
## =======================================================================================
##                            GSE Sample         GSE Sample (<2008)     Non-agency sample 
##                          (1)        (2)         (3)         (4)        (5)       (6)   
## ---------------------------------------------------------------------------------------
## MSAcq1-3               0.636***   0.768***   0.537***    1.181***   6.128***  9.079*** 
##                        (0.058)    (0.069)     (0.080)     (0.103)    (0.747)   (0.737) 
## MSAcq4-6                0.105      0.085                                               
##                        (0.076)    (0.108)                                              
## FICO score            -0.0001*** -0.0001*** -0.00003*** -0.00003*** -0.003*** -0.003***
##                       (0.00000)  (0.00000)   (0.00000)   (0.00000)  (0.0001)  (0.0001) 
## Loan-to-value          0.004***   0.004***   0.004***    0.004***   0.018***  0.018*** 
##                       (0.00004)  (0.00004)   (0.0001)    (0.0001)    (0.001)   (0.001) 
## Debt-to-income        0.0001***  0.0001***   0.0001***   0.0001***                     
##                       (0.00000)  (0.00000)   (0.00000)   (0.00000)                     
## Full documentation                                                  -0.222*** -0.222***
##                                                                      (0.010)   (0.010) 
## log(Loan amount)      -0.232***  -0.232***   -0.240***   -0.240***  -1.108*** -1.108***
##                        (0.002)    (0.002)     (0.002)     (0.002)    (0.018)   (0.018) 
## Freddie Mac            0.048***   0.048***   0.056***    0.056***                      
##                        (0.003)    (0.003)     (0.003)     (0.003)                      
## New purchase*MSAcq1-3            -0.344***               -1.529***            -7.559***
##                                   (0.065)                 (0.102)              (1.075) 
## New purchase*MSAcq4-6              0.039                                               
##                                   (0.140)                                              
## New purchase           0.024***   0.025***   0.013***    0.014***   0.121***  0.123*** 
##                        (0.002)    (0.002)     (0.003)     (0.003)    (0.020)   (0.021) 
## Alt-A                                                               0.111***  0.111*** 
##                                                                      (0.007)   (0.007) 
## Subprime                                                            0.403***  0.403*** 
##                                                                      (0.013)   (0.013) 
## Year*MSA                  Y          Y           Y           Y          Y         Y    
## Bank                      Y          Y           Y           Y          Y         Y    
## N                     23,793,279 23,793,279 13,622,426  13,622,426  3,026,530 3,026,530
## Adjusted R2             0.896      0.896       0.749       0.749      0.467     0.468  
## =======================================================================================

7.3 Bank-Year and MSA FE

regsample <- rbind(freddie,fannie)

regsample <- merge(regsample,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_year:=paste(seller_name,loanyr)]
regsample[,yr_msa:=paste(loanyr,msa)]

  r <- list()
  r[[1]] <- felm(int_rt~msinc13+msinc46+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|bank_year+msa|0|msa,data=regsample)

  r[[2]] <- felm(int_rt~newpurchase*msinc13+newpurchase*msinc46+fico+ltv+dti+log(orig_upb)+freddie|bank_year+msa|0|msa,data=regsample)
  
  r[[3]] <- felm(int_rt~msinc13+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|bank_year+msa|0|msa,data=regsample[loanyr<=2007])

  r[[4]] <- felm(int_rt~newpurchase*msinc13+fico+ltv+dti+log(orig_upb)+freddie|bank_year+msa|0|msa,data=regsample[loanyr<=2007])
  
  

regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,bank_year:=paste(seller_name,loanyr)]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
regsample[,yr_msa:=paste(loanyr,msa)]

  r[[5]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|bank_year+msa|0|msa,data=regsample[originalterm==360 & armflag=="F"])  
  r[[6]] <- felm(int_rt~newpurchase*msinc13+fico+ltv+fulldocumentation+log(orig_upb)+factor(assettype)|bank_year+msa|0|msa,data=regsample[originalterm==360 & armflag=="F"])
  
stargazer(r,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,type="text",covariate.labels = covlabs,
          column.labels=c("GSE Sample","GSE Sample (<2008)","Non-agency sample"),column.separate=c(2,2,2),
          add.lines = list(c("Bank*Year", rep("Y",6)),c("MSA", rep("Y",6))))
## 
## =======================================================================================
##                            GSE Sample         GSE Sample (<2008)     Non-agency sample 
##                          (1)        (2)         (3)         (4)        (5)       (6)   
## ---------------------------------------------------------------------------------------
## MSAcq1-3               0.185**    0.277***    -0.179      0.418**   2.920***  5.996*** 
##                        (0.089)    (0.091)     (0.152)     (0.182)    (0.814)   (0.805) 
## MSAcq4-6                -0.015     -0.031                                              
##                        (0.086)    (0.088)                                              
## FICO score            -0.0001*** -0.0001*** -0.00003*** -0.00003*** -0.003*** -0.003***
##                       (0.00001)  (0.00001)   (0.00000)   (0.00000)  (0.0001)  (0.0001) 
## Loan-to-value          0.004***   0.004***   0.004***    0.004***   0.017***  0.017*** 
##                        (0.0001)   (0.0001)   (0.0001)    (0.0001)    (0.001)   (0.001) 
## Debt-to-income        0.0001***  0.0001***  0.00005***  0.00005***                     
##                       (0.00001)  (0.00001)   (0.00001)   (0.00001)                     
## Full documentation                                                  -0.215*** -0.215***
##                                                                      (0.009)   (0.009) 
## log(Loan amount)      -0.227***  -0.227***   -0.237***   -0.237***  -1.077*** -1.077***
##                        (0.006)    (0.006)     (0.005)     (0.005)    (0.017)   (0.017) 
## Freddie Mac            0.055***   0.055***   0.051***    0.051***                      
##                        (0.002)    (0.002)     (0.003)     (0.003)                      
## New purchase*MSAcq1-3            -0.249***               -1.428***            -7.820***
##                                   (0.054)                 (0.113)              (1.037) 
## New purchase*MSAcq4-6              0.041                                               
##                                   (0.101)                                              
## New purchase           0.020***   0.021***   0.012***    0.013***   0.145***  0.147*** 
##                        (0.004)    (0.004)     (0.003)     (0.003)    (0.018)   (0.018) 
## Alt-A                                                               0.122***  0.122*** 
##                                                                      (0.006)   (0.006) 
## Subprime                                                            0.396***  0.396*** 
##                                                                      (0.014)   (0.014) 
## Bank*Year                 Y          Y           Y           Y          Y         Y    
## MSA                       Y          Y           Y           Y          Y         Y    
## N                     23,793,279 23,793,279 13,622,426  13,622,426  3,026,530 3,026,530
## Adjusted R2             0.897      0.897       0.753       0.753      0.488     0.488  
## =======================================================================================

8 Table 4 - Panel B - Effect of Mergers on Interest Rate

8.1 Bank-MSA and Year FE

regsample <- rbind(freddie,fannie)

regsample <- merge(regsample,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]


   r <- list()
  r[[1]] <- felm(int_rt~factor(msinc13G)+factor(msinc46G)+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|bank_msa+loanyr|0|msa,data=regsample)

  r[[2]] <- felm(int_rt~factor(msinc13G)+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|bank_msa+loanyr|0|msa,data=regsample[loanyr<=2007])

  

regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
# regsample[,yr_msa:=paste(loanyr,msa)]

  r[[3]] <- felm(int_rt~factor(msinc13G)+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F"])  
  
covlabs <- c("MSAcq1-3 (0,1]","MSAcq1-3 (1,5]","MSAcq1-3 (5-10]","MSAcq1-3 (10,.]","MSAcq4-6 (0,1]","MSAcq4-6 (1,5]","MSAcq4-6 (5-10]","MSAcq4-6 (10,.]","FICO score","Loan-to-value","Debt-to-income","Full documentation","log(Loan amount)","Freddie Mac","New purchase","Alt-A","Subprime")

stargazer(r,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,type="text",covariate.labels = covlabs,
          column.labels=c("GSE Sample","GSE Sample (<2008)","Non-agency sample"),column.separate=c(1,1,1),
          add.lines = list(c("Bank*MSA", rep("Y",6)),c("Year", rep("Y",6))))
## 
## ==================================================================
##                    GSE Sample GSE Sample (<2008) Non-agency sample
##                       (1)            (2)                (3)       
## ------------------------------------------------------------------
## MSAcq1-3 (0,1]      0.051***       0.032***           -0.017      
##                     (0.003)        (0.005)            (0.022)     
## MSAcq1-3 (1,5]      0.045***       0.026***          0.320***     
##                     (0.004)        (0.007)            (0.071)     
## MSAcq1-3 (5-10]     0.044***       0.031***          0.490***     
##                     (0.006)        (0.010)            (0.119)     
## MSAcq1-3 (10,.]     0.098***        0.066            1.514***     
##                     (0.008)        (0.057)            (0.384)     
## MSAcq4-6 (0,1]      0.011***                                      
##                     (0.004)                                       
## MSAcq4-6 (1,5]      0.024***                                      
##                     (0.006)                                       
## MSAcq4-6 (5-10]      0.004                                        
##                     (0.010)                                       
## MSAcq4-6 (10,.]      -0.001                                       
##                     (0.010)                                       
## FICO score         -0.0001***    -0.00003***         -0.003***    
##                    (0.00001)      (0.00000)          (0.0001)     
## Loan-to-value       0.004***       0.004***          0.017***     
##                     (0.0001)       (0.0001)           (0.001)     
## Debt-to-income     0.0001***      0.0001***                       
##                    (0.00001)      (0.00001)                       
## Full documentation                                   -0.223***    
##                                                       (0.010)     
## log(Loan amount)   -0.228***      -0.236***          -1.090***    
##                     (0.006)        (0.005)            (0.018)     
## Freddie Mac         0.047***       0.051***                       
##                     (0.002)        (0.003)                        
## New purchase        0.025***       0.015***          0.123***     
##                     (0.004)        (0.003)            (0.020)     
## Alt-A                                                0.110***     
##                                                       (0.007)     
## Subprime                                             0.409***     
##                                                       (0.014)     
## Bank*MSA               Y              Y                  Y        
## Year                   Y              Y                  Y        
## N                  23,793,279     13,622,426         3,026,530    
## Adjusted R2          0.896          0.751              0.483      
## ==================================================================

8.2 Year-MSA and Bank FE

regsample <- rbind(freddie,fannie)

regsample <- merge(regsample,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,yr_msa:=paste(loanyr,msa)]

  r <- list()
  r[[1]] <- felm(int_rt~factor(msinc13G)+factor(msinc46G)+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|yr_msa+seller_name|0|msa,data=regsample)

  r[[2]] <- felm(int_rt~factor(msinc13G)+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|yr_msa+seller_name|0|msa,data=regsample[loanyr<=2007])

  
  

regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
regsample[,yr_msa:=paste(loanyr,msa)]

   r[[3]] <- felm(int_rt~factor(msinc13G)+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|yr_msa+seller_name|0|msa,data=regsample[originalterm==360 & armflag=="F"])  

   
stargazer(r,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,type="text",covariate.labels = covlabs,
          column.labels=c("GSE Sample","GSE Sample (<2008)","Non-agency sample"),column.separate=c(1,1,1),
          add.lines = list(c("Year*MSA", rep("Y",6)),c("Bank", rep("Y",6))))
## 
## ==================================================================
##                    GSE Sample GSE Sample (<2008) Non-agency sample
##                       (1)            (2)                (3)       
## ------------------------------------------------------------------
## MSAcq1-3 (0,1]      0.049***       0.025***           -0.006      
##                     (0.003)        (0.004)            (0.019)     
## MSAcq1-3 (1,5]      0.043***       0.025***          0.272***     
##                     (0.003)        (0.006)            (0.052)     
## MSAcq1-3 (5-10]     0.045***       0.032***          0.332***     
##                     (0.005)        (0.008)            (0.054)     
## MSAcq1-3 (10,.]     0.071***       0.065***           0.584**     
##                     (0.006)        (0.005)            (0.253)     
## MSAcq4-6 (0,1]       0.004                                        
##                     (0.004)                                       
## MSAcq4-6 (1,5]      0.027***                                      
##                     (0.005)                                       
## MSAcq4-6 (5-10]      0.013*                                       
##                     (0.008)                                       
## MSAcq4-6 (10,.]    -0.077***                                      
##                     (0.011)                                       
## FICO score         -0.0001***    -0.00003***         -0.003***    
##                    (0.00001)      (0.00000)          (0.0001)     
## Loan-to-value       0.004***       0.004***          0.018***     
##                     (0.0001)       (0.0001)           (0.001)     
## Debt-to-income     0.0001***      0.0001***                       
##                    (0.00001)      (0.00001)                       
## Full documentation                                   -0.222***    
##                                                       (0.010)     
## log(Loan amount)   -0.232***      -0.240***          -1.108***    
##                     (0.006)        (0.005)            (0.018)     
## Freddie Mac         0.049***       0.055***                       
##                     (0.002)        (0.003)                        
## New purchase        0.024***       0.013***          0.121***     
##                     (0.004)        (0.003)            (0.020)     
## Alt-A                                                0.111***     
##                                                       (0.007)     
## Subprime                                             0.403***     
##                                                       (0.013)     
## Year*MSA               Y              Y                  Y        
## Bank                   Y              Y                  Y        
## N                  23,793,279     13,622,426         3,026,530    
## Adjusted R2          0.896          0.749              0.467      
## ==================================================================

8.3 Bank-Year and MSA FE

regsample <- rbind(freddie,fannie)

regsample <- merge(regsample,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_year:=paste(seller_name,loanyr)]
regsample[,yr_msa:=paste(loanyr,msa)]

  r <- list()
  r[[1]] <- felm(int_rt~factor(msinc13G)+factor(msinc46G)+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|bank_year+msa|0|msa,data=regsample)

  r[[2]] <- felm(int_rt~factor(msinc13G)+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|bank_year+msa|0|msa,data=regsample[loanyr<=2007])

  

regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,bank_year:=paste(seller_name,loanyr)]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
regsample[,yr_msa:=paste(loanyr,msa)]

  r[[3]] <- felm(int_rt~factor(msinc13G)+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|bank_year+msa|0|msa,data=regsample[originalterm==360 & armflag=="F"])  
  
stargazer(r,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,type="text",covariate.labels = covlabs,
          column.labels=c("GSE Sample","GSE Sample (<2008)","Non-agency sample"),column.separate=c(1,1,1),
          add.lines = list(c("Bank*Year", rep("Y",6)),c("MSA", rep("Y",6))))
## 
## ==================================================================
##                    GSE Sample GSE Sample (<2008) Non-agency sample
##                       (1)            (2)                (3)       
## ------------------------------------------------------------------
## MSAcq1-3 (0,1]     -0.029***        0.010              0.057      
##                     (0.010)        (0.010)            (0.053)     
## MSAcq1-3 (1,5]      -0.025**        -0.011             0.119      
##                     (0.011)        (0.013)            (0.088)     
## MSAcq1-3 (5-10]     -0.018*         0.002            0.210***     
##                     (0.010)        (0.012)            (0.072)     
## MSAcq1-3 (10,.]      0.007         0.043***           0.424*      
##                     (0.013)        (0.011)            (0.239)     
## MSAcq4-6 (0,1]       -0.005                                       
##                     (0.007)                                       
## MSAcq4-6 (1,5]      -0.017**                                      
##                     (0.007)                                       
## MSAcq4-6 (5-10]      -0.016                                       
##                     (0.010)                                       
## MSAcq4-6 (10,.]      0.018                                        
##                     (0.013)                                       
## FICO score         -0.0001***    -0.00003***         -0.003***    
##                    (0.00001)      (0.00000)          (0.0001)     
## Loan-to-value       0.004***       0.004***          0.017***     
##                     (0.0001)       (0.0001)           (0.001)     
## Debt-to-income     0.0001***      0.00005***                      
##                    (0.00001)      (0.00001)                       
## Full documentation                                   -0.215***    
##                                                       (0.009)     
## log(Loan amount)   -0.227***      -0.237***          -1.077***    
##                     (0.006)        (0.005)            (0.017)     
## Freddie Mac         0.054***       0.050***                       
##                     (0.002)        (0.003)                        
## New purchase        0.020***       0.011***          0.145***     
##                     (0.004)        (0.003)            (0.018)     
## Alt-A                                                0.122***     
##                                                       (0.006)     
## Subprime                                             0.396***     
##                                                       (0.014)     
## Bank*Year              Y              Y                  Y        
## MSA                    Y              Y                  Y        
## N                  23,793,279     13,622,426         3,026,530    
## Adjusted R2          0.897          0.753              0.488      
## ==================================================================

9 Table 4 - Panel C - Effect of Mergers on Interest Rate

regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))
regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
regsample[,high_suc_share:=ifelse(suc_share>0.05,1,0)]
regsample[,logoneoverfico:=log(1/fico)]
regsample[,yr_msa:=paste(loanyr,msa)]
regsample[,bank_year:=paste(seller_name,loanyr)]

9.1 Bank-MSA and Year FE

r <- list()
r[[1]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="0Prime"  & documentationtype %in% c("FU","NO","LO")])  
 
r[[2]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Alt-A"  & documentationtype %in% c("FU","NO","LO")])

r[[3]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Subprime"  & documentationtype %in% c("FU","NO","LO")])  

  
covlabs <- c("MSAcq1-3","FICO score","Loan-to-value","Full documentation","log(Loan amount)","New purchase")

stargazer(r,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,type="text",covariate.labels = covlabs,
          column.labels=c("Prime","Alt-A","Subprime"),column.separate=c(1,1,1),
          add.lines = list(c("Bank*MSA", rep("Y",6)),c("Year", rep("Y",6))))
## 
## ================================================
##                      Prime     Alt-A   Subprime 
##                       (1)       (2)       (3)   
## ------------------------------------------------
## MSAcq1-3             0.001   7.273***  58.195***
##                     (0.700)   (2.008)   (5.228) 
## FICO score         -0.002*** -0.003*** -0.004***
##                    (0.0001)  (0.0002)  (0.0002) 
## Loan-to-value      0.013***  0.022***  0.022*** 
##                     (0.001)   (0.001)   (0.001) 
## Full documentation -0.149*** -0.350*** -0.297***
##                     (0.010)   (0.015)   (0.015) 
## log(Loan amount)   -0.744*** -1.321*** -1.689***
##                     (0.016)   (0.031)   (0.033) 
## New purchase       0.083***  0.163***  0.206*** 
##                     (0.012)   (0.021)   (0.033) 
## Bank*MSA               Y         Y         Y    
## Year                   Y         Y         Y    
## N                  1,509,016  524,470   530,678 
## Adjusted R2          0.512     0.486     0.381  
## ================================================

9.2 Year-MSA and Bank FE

r <- list()
r[[1]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|yr_msa+seller_name|0|yr_msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="0Prime"  & documentationtype %in% c("FU","NO","LO")])  
r[[2]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|yr_msa+seller_name|0|yr_msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Alt-A"  & documentationtype %in% c("FU","NO","LO")])
r[[3]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|yr_msa+seller_name|0|yr_msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Subprime"  & documentationtype %in% c("FU","NO","LO")])  

  
stargazer(r,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,type="text",covariate.labels = covlabs,
          column.labels=c("Prime","Alt-A","Subprime"),column.separate=c(1,1,1),
          add.lines = list(c("Year*MSA", rep("Y",6)),c("Bank", rep("Y",6))))
## 
## ================================================
##                      Prime     Alt-A   Subprime 
##                       (1)       (2)       (3)   
## ------------------------------------------------
## MSAcq1-3           1.966***  7.158***  13.057***
##                     (0.725)   (1.267)   (2.083) 
## FICO score         -0.002*** -0.003*** -0.003***
##                    (0.0001)  (0.0001)  (0.0002) 
## Loan-to-value      0.013***  0.023***  0.022*** 
##                    (0.0004)   (0.001)   (0.001) 
## Full documentation -0.155*** -0.351*** -0.294***
##                     (0.008)   (0.012)   (0.013) 
## log(Loan amount)   -0.763*** -1.344*** -1.691***
##                     (0.019)   (0.034)   (0.028) 
## New purchase       0.077***  0.165***  0.204*** 
##                     (0.009)   (0.014)   (0.021) 
## Year*MSA               Y         Y         Y    
## Bank                   Y         Y         Y    
## N                  1,509,016  524,470   530,678 
## Adjusted R2          0.487     0.466     0.367  
## ================================================

9.3 Bank-Year and MSA FE

r <- list()
r[[1]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|bank_year+msa|0|yr_msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="0Prime"  & documentationtype %in% c("FU","NO","LO")])  
r[[2]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|bank_year+msa|0|yr_msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Alt-A"  & documentationtype %in% c("FU","NO","LO")])
r[[3]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|bank_year+msa|0|yr_msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Subprime"  & documentationtype %in% c("FU","NO","LO")])  

  
stargazer(r,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,type="text",covariate.labels = covlabs,
          column.labels=c("Prime","Alt-A","Subprime"),column.separate=c(1,1,1),
          add.lines = list(c("Bank*Year", rep("Y",6)),c("MSA", rep("Y",6))))
## 
## ================================================
##                      Prime     Alt-A   Subprime 
##                       (1)       (2)       (3)   
## ------------------------------------------------
## MSAcq1-3             1.395   4.364***    1.477  
##                     (0.878)   (1.336)   (1.439) 
## FICO score         -0.002*** -0.003*** -0.004***
##                    (0.0001)  (0.0002)  (0.0002) 
## Loan-to-value      0.013***  0.022***  0.023*** 
##                    (0.0004)   (0.001)   (0.001) 
## Full documentation -0.149*** -0.345*** -0.318***
##                     (0.008)   (0.013)   (0.013) 
## log(Loan amount)   -0.737*** -1.318*** -1.656***
##                     (0.020)   (0.035)   (0.028) 
## New purchase       0.091***  0.173***  0.207*** 
##                     (0.008)   (0.013)   (0.021) 
## Bank*Year              Y         Y         Y    
## MSA                    Y         Y         Y    
## N                  1,509,016  524,470   530,678 
## Adjusted R2          0.510     0.483     0.394  
## ================================================

10 Table 5 - Panel A - Effect of Mergers on Loan Amount

10.1 Bank-MSA and Year FE

regsample <- rbind(freddie,fannie)

regsample <- merge(regsample,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]

  r <- list()
  r[[1]] <- felm(log(orig_upb)~msinc13+msinc46+fico+ltv+dti+log(homevalue)+freddie+newpurchase|bank_msa+loanyr|0|msa,data=regsample)

  r[[2]] <- felm(log(orig_upb)~newpurchase*msinc13+newpurchase*msinc46+fico+ltv+dti+log(homevalue)+freddie|bank_msa+loanyr|0|msa,data=regsample)
  
  r[[3]] <- felm(log(orig_upb)~msinc13+fico+ltv+dti+log(homevalue)+freddie+newpurchase|bank_msa+loanyr|0|msa,data=regsample[loanyr<=2007])

  r[[4]] <- felm(log(orig_upb)~newpurchase*msinc13+fico+ltv+dti+log(homevalue)+freddie|bank_msa+loanyr|0|msa,data=regsample[loanyr<=2007])
  
  

regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
regsample[,homevalue:= orig_upb*100/ltvorg]

  r[[5]] <- felm(log(orig_upb)~msinc13+fico+ltv+fulldocumentation+log(homevalue)+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F"])  
  r[[6]] <- felm(log(orig_upb)~newpurchase*msinc13+fico+ltv+fulldocumentation+log(homevalue)+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F"])
  

covlabs <- c("MSAcq1-3","MSAcq4-6","FICO score","Debt-to-income","Full documentation","log(Home value)","Freddie Mac","New purchase*MSAcq1-3","New purchase*MSAcq4-6","New purchase","Alt-A","Subprime")

stargazer(r,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,type="text",covariate.labels = covlabs,
          column.labels=c("GSE Sample","GSE Sample (<2008)","Non-agency sample"),column.separate=c(2,2,2),
          add.lines = list(c("Bank*MSA", rep("Y",6)),c("Year", rep("Y",6))))
## 
## =============================================================================================
##                                 GSE Sample          GSE Sample (<2008)     Non-agency sample 
##                               (1)         (2)         (3)         (4)        (5)       (6)   
## ---------------------------------------------------------------------------------------------
## MSAcq1-3                    -0.004     -0.132***     0.008     -0.054**   2.639***    0.399  
##                             (0.014)     (0.019)     (0.022)     (0.025)    (0.322)   (0.413) 
## MSAcq4-6                   -0.040**    -0.180***                                             
##                             (0.016)     (0.021)                                              
## FICO score                -0.00000*** -0.00000*** -0.00000*** -0.00000*** 0.0003*** 0.0003***
##                            (0.00000)   (0.00000)   (0.00000)   (0.00000)  (0.00002) (0.00002)
## Debt-to-income             0.015***    0.015***    0.015***    0.015***   0.006***  0.006*** 
##                            (0.0002)    (0.0002)    (0.0002)    (0.0002)   (0.0004)  (0.0004) 
## Full documentation        0.00001***  0.00001***  0.00001***  0.00001***                     
##                            (0.00000)   (0.00000)   (0.00000)   (0.00000)                     
## log(Home value)                                                           0.010***  0.010*** 
##                                                                            (0.003)   (0.003) 
## Freddie Mac                0.964***    0.964***    0.968***    0.968***   0.903***  0.903*** 
##                             (0.002)     (0.002)     (0.002)     (0.002)    (0.004)   (0.004) 
## New purchase*MSAcq1-3      -0.008***   -0.008***   -0.008***   -0.008***                     
##                            (0.0004)    (0.0004)    (0.0004)    (0.0004)                      
## New purchase*MSAcq4-6                  0.345***                0.151***             5.573*** 
##                                         (0.027)                 (0.022)              (0.460) 
## New purchase                           0.399***                                              
##                                         (0.036)                                              
## Alt-A                      -0.016***   -0.018***   -0.021***   -0.022***  -0.145*** -0.146***
##                             (0.001)     (0.001)     (0.002)     (0.002)    (0.006)   (0.006) 
## Subprime                                                                  -0.074*** -0.074***
##                                                                            (0.003)   (0.003) 
## factor(assettype)Subprime                                                  -0.007    -0.006  
##                                                                            (0.005)   (0.005) 
## Bank*MSA                       Y           Y           Y           Y          Y         Y    
## Year                           Y           Y           Y           Y          Y         Y    
## N                         23,793,274  23,793,274  13,622,421  13,622,421  3,026,562 3,026,562
## Adjusted R2                  0.967       0.967       0.956       0.956      0.764     0.764  
## =============================================================================================

10.2 Year-MSA and Bank FE

regsample <- rbind(freddie,fannie)

regsample <- merge(regsample,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,yr_msa:=paste(loanyr,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]

  r <- list()
  r[[1]] <- felm(log(orig_upb)~msinc13+msinc46+fico+dti+log(homevalue)+freddie+newpurchase|seller_name+yr_msa|0|yr_msa,data=regsample)

  r[[2]] <- felm(log(orig_upb)~newpurchase*msinc13+newpurchase*msinc46+fico+dti+log(homevalue)+freddie|seller_name+yr_msa|0|yr_msa,data=regsample)
  
  r[[3]] <- felm(log(orig_upb)~msinc13+fico+dti+log(homevalue)+freddie+newpurchase|seller_name+yr_msa|0|yr_msa,data=regsample[loanyr<=2007])

  r[[4]] <- felm(log(orig_upb)~newpurchase*msinc13+fico+dti+log(homevalue)+freddie|seller_name+yr_msa|0|yr_msa,data=regsample[loanyr<=2007])
  
  

regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
regsample[,yr_msa:=paste(loanyr,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]

  r[[5]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase+factor(assettype)|seller_name+yr_msa|0|msa,data=regsample[originalterm==360 & armflag=="F"])  
  r[[6]] <- felm(log(orig_upb)~newpurchase*msinc13+fico+fulldocumentation+log(homevalue)+factor(assettype)|seller_name+yr_msa|0|msa,data=regsample[originalterm==360 & armflag=="F"])
  
stargazer(r,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,type="text",covariate.labels = covlabs,
          column.labels=c("GSE Sample","GSE Sample (<2008)","Non-agency sample"),column.separate=c(2,2,2),
          add.lines = list(c("Year*MSA", rep("Y",6)),c("Bank", rep("Y",6))))
## 
## =========================================================================================
##                             GSE Sample          GSE Sample (<2008)     Non-agency sample 
##                           (1)         (2)         (3)         (4)        (5)       (6)   
## -----------------------------------------------------------------------------------------
## MSAcq1-3                0.038*      -0.036      0.062*      0.128**    0.719**  -1.404***
##                         (0.020)     (0.032)     (0.033)     (0.064)    (0.290)   (0.443) 
## MSAcq4-6               -0.197***   -0.371***                                             
##                         (0.033)     (0.046)                                              
## FICO score            -0.00003*** -0.00003*** -0.00003*** -0.00003*** 0.0004*** 0.0004***
##                        (0.00000)   (0.00000)   (0.00000)   (0.00000)  (0.00002) (0.00002)
## Debt-to-income        0.00003***  0.00003***  0.00002***  0.00002***                     
##                        (0.00000)   (0.00000)   (0.00000)   (0.00000)                     
## Full documentation                                                    0.038***  0.038*** 
##                                                                        (0.003)   (0.003) 
## log(Home value)        0.841***    0.842***    0.826***    0.826***   0.838***  0.838*** 
##                         (0.003)     (0.003)     (0.004)     (0.004)    (0.005)   (0.005) 
## Freddie Mac            -0.014***   -0.014***   -0.009***   -0.009***                     
##                         (0.001)     (0.001)     (0.001)     (0.001)                      
## New purchase*MSAcq1-3              0.204***                 -0.158              5.436*** 
##                                     (0.061)                 (0.114)              (0.466) 
## New purchase*MSAcq4-6              0.487***                                              
##                                     (0.055)                                              
## New purchase           0.130***    0.129***    0.110***    0.110***   -0.093*** -0.094***
##                         (0.001)     (0.001)     (0.002)     (0.002)    (0.010)   (0.010) 
## Alt-A                                                                 -0.087*** -0.087***
##                                                                        (0.004)   (0.004) 
## Subprime                                                              -0.035*** -0.035***
##                                                                        (0.005)   (0.005) 
## Year*MSA                   Y           Y           Y           Y          Y         Y    
## Bank                       Y           Y           Y           Y          Y         Y    
## N                     23,889,212  23,889,212  13,718,103  13,718,103  3,272,969 3,272,969
## Adjusted R2              0.817       0.817       0.778       0.778      0.743     0.743  
## =========================================================================================

10.3 Bank-Year and MSA FE

regsample <- rbind(freddie,fannie)

regsample <- merge(regsample,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_year:=paste(seller_name,loanyr)]
regsample[,yr_msa:=paste(loanyr,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]

  r <- list()
  r[[1]] <- felm(log(orig_upb)~msinc13+msinc46+fico+dti+log(homevalue)+freddie+newpurchase|bank_year+msa|0|msa,data=regsample)

  r[[2]] <- felm(log(orig_upb)~newpurchase*msinc13+newpurchase*msinc46+fico+dti+log(homevalue)+freddie|bank_year+msa|0|msa,data=regsample)
  
  r[[3]] <- felm(log(orig_upb)~msinc13+fico+dti+log(homevalue)+freddie+newpurchase|bank_year+msa|0|msa,data=regsample[loanyr<=2007])

  r[[4]] <- felm(log(orig_upb)~newpurchase*msinc13+fico+dti+log(homevalue)+freddie|bank_year+msa|0|msa,data=regsample[loanyr<=2007])
  
  

regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,bank_year:=paste(seller_name,loanyr)]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
regsample[,yr_msa:=paste(loanyr,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]

  r[[5]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase+factor(assettype)|bank_year+msa|0|msa,data=regsample[originalterm==360 & armflag=="F"])  
  r[[6]] <- felm(log(orig_upb)~newpurchase*msinc13+fico+fulldocumentation+log(homevalue)+factor(assettype)|bank_year+msa|0|msa,data=regsample[originalterm==360 & armflag=="F"])
  
stargazer(r,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,type="text",covariate.labels = covlabs,
          column.labels=c("GSE Sample","GSE Sample (<2008)","Non-agency sample"),column.separate=c(2,2,2),
          add.lines = list(c("Bank*Year", rep("Y",6)),c("MSA", rep("Y",6))))
## 
## =========================================================================================
##                             GSE Sample          GSE Sample (<2008)     Non-agency sample 
##                           (1)         (2)         (3)         (4)        (5)       (6)   
## -----------------------------------------------------------------------------------------
## MSAcq1-3                -0.010      -0.061     0.295***    0.362***    -0.247   -2.290***
##                         (0.039)     (0.040)     (0.073)     (0.096)    (0.153)   (0.284) 
## MSAcq4-6                 0.067      -0.087                                               
##                         (0.047)     (0.058)                                              
## FICO score            -0.00003*** -0.00003*** -0.00002*** -0.00002*** 0.0003*** 0.0003***
##                        (0.00000)   (0.00000)   (0.00000)   (0.00000)  (0.00002) (0.00002)
## Debt-to-income        0.00003***  0.00003***  0.00002***  0.00002***                     
##                        (0.00001)   (0.00001)   (0.00001)   (0.00001)                     
## Full documentation                                                    0.043***  0.043*** 
##                                                                        (0.002)   (0.002) 
## log(Home value)        0.841***    0.841***    0.822***    0.822***   0.844***  0.844*** 
##                         (0.010)     (0.010)     (0.010)     (0.010)    (0.004)   (0.004) 
## Freddie Mac            -0.017***   -0.017***   -0.009***   -0.009***                     
##                         (0.001)     (0.001)     (0.002)     (0.002)                      
## New purchase*MSAcq1-3               0.142**                 -0.159              5.194*** 
##                                     (0.066)                 (0.116)              (0.437) 
## New purchase*MSAcq4-6              0.414***                                              
##                                     (0.067)                                              
## New purchase           0.131***    0.130***    0.112***    0.112***   -0.080*** -0.081***
##                         (0.003)     (0.003)     (0.004)     (0.004)    (0.009)   (0.009) 
## Alt-A                                                                 -0.085*** -0.085***
##                                                                        (0.004)   (0.004) 
## Subprime                                                              -0.035*** -0.035***
##                                                                        (0.005)   (0.005) 
## Bank*Year                  Y           Y           Y           Y          Y         Y    
## MSA                        Y           Y           Y           Y          Y         Y    
## N                     23,889,212  23,889,212  13,718,103  13,718,103  3,272,969 3,272,969
## Adjusted R2              0.815       0.815       0.777       0.777      0.754     0.754  
## =========================================================================================

11 Table 5 - Panel B - Effect of Mergers on Loan Amount

11.1 Bank-MSA and Year FE

regsample <- rbind(freddie,fannie)

regsample <- merge(regsample,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]

   r <- list()
  r[[1]] <- felm(log(orig_upb)~factor(msinc13G)+factor(msinc46G)+fico+dti+log(homevalue)+freddie+newpurchase|bank_msa+loanyr|0|msa,data=regsample)

  r[[2]] <- felm(log(orig_upb)~factor(msinc13G)+fico+dti+log(homevalue)+freddie+newpurchase|bank_msa+loanyr|0|msa,data=regsample[loanyr<=2007])

  

regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
# regsample[,yr_msa:=paste(loanyr,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]

  r[[3]] <- felm(log(orig_upb)~factor(msinc13G)+fico+fulldocumentation+log(homevalue)+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F"])  
  
covlabs <- c("MSAcq1-3 (0,1]","MSAcq1-3 (1,5]","MSAcq1-3 (5-10]","MSAcq1-3 (10,.]","MSAcq4-6 (0,1]","MSAcq4-6 (1,5]","MSAcq4-6 (5-10]","MSAcq4-6 (10,.]","FICO score","Debt-to-income","Full documentation","log(Home value)","Freddie Mac","New purchase","Alt-A","Subprime")

stargazer(r,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,type="text",covariate.labels = covlabs,
          column.labels=c("GSE Sample","GSE Sample (<2008)","Non-agency sample"),column.separate=c(1,1,1),
          add.lines = list(c("Bank*MSA", rep("Y",6)),c("Year", rep("Y",6))))
## 
## ===================================================================
##                    GSE Sample  GSE Sample (<2008) Non-agency sample
##                        (1)            (2)                (3)       
## -------------------------------------------------------------------
## MSAcq1-3 (0,1]        0.003          0.002              0.011      
##                      (0.002)        (0.003)            (0.007)     
## MSAcq1-3 (1,5]        0.002          0.002            0.126***     
##                      (0.003)        (0.003)            (0.018)     
## MSAcq1-3 (5-10]      0.010*          0.009*           0.113***     
##                      (0.006)        (0.005)            (0.031)     
## MSAcq1-3 (10,.]       0.001          0.007            0.320***     
##                      (0.008)        (0.024)            (0.026)     
## MSAcq4-6 (0,1]        0.001                                        
##                      (0.003)                                       
## MSAcq4-6 (1,5]      0.007***                                       
##                      (0.002)                                       
## MSAcq4-6 (5-10]      -0.005                                        
##                      (0.006)                                       
## MSAcq4-6 (10,.]     -0.039***                                      
##                      (0.014)                                       
## FICO score         -0.00003***    -0.00003***         0.0004***    
##                     (0.00000)      (0.00000)          (0.00002)    
## Debt-to-income     0.00003***      0.00002***                      
##                     (0.00001)      (0.00001)                       
## Full documentation                                    0.037***     
##                                                        (0.003)     
## log(Home value)     0.840***        0.822***          0.838***     
##                      (0.010)        (0.010)            (0.005)     
## Freddie Mac         -0.014***      -0.009***                       
##                      (0.001)        (0.001)                        
## New purchase        0.131***        0.112***          -0.086***    
##                      (0.003)        (0.004)            (0.010)     
## Alt-A                                                 -0.083***    
##                                                        (0.004)     
## Subprime                                              -0.034***    
##                                                        (0.005)     
## Bank*MSA                Y              Y                  Y        
## Year                    Y              Y                  Y        
## N                  23,889,212      13,718,103         3,272,969    
## Adjusted R2           0.816          0.778              0.748      
## ===================================================================

11.2 Year-MSA and Bank FE

regsample <- rbind(freddie,fannie)

regsample <- merge(regsample,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,yr_msa:=paste(loanyr,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]

  r <- list()
  r[[1]] <- felm(log(orig_upb)~factor(msinc13G)+factor(msinc46G)+fico+dti+log(homevalue)+freddie+newpurchase|yr_msa+seller_name|0|msa,data=regsample)

  r[[2]] <- felm(log(orig_upb)~factor(msinc13G)+fico+dti+log(homevalue)+freddie+newpurchase|yr_msa+seller_name|0|msa,data=regsample[loanyr<=2007])

  
  

regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
regsample[,yr_msa:=paste(loanyr,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]

   r[[3]] <- felm(log(orig_upb)~factor(msinc13G)+fico+fulldocumentation+log(homevalue)+newpurchase+factor(assettype)|yr_msa+seller_name|0|msa,data=regsample[originalterm==360 & armflag=="F"])  

   
stargazer(r,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,type="text",covariate.labels = covlabs,
          column.labels=c("GSE Sample","GSE Sample (<2008)","Non-agency sample"),column.separate=c(1,1,1),
          add.lines = list(c("Year*MSA", rep("Y",6)),c("Bank", rep("Y",6))))
## 
## ===================================================================
##                    GSE Sample  GSE Sample (<2008) Non-agency sample
##                        (1)            (2)                (3)       
## -------------------------------------------------------------------
## MSAcq1-3 (0,1]      0.002***        0.004***          0.025***     
##                      (0.001)        (0.001)            (0.008)     
## MSAcq1-3 (1,5]      0.005***         0.004            0.065***     
##                      (0.001)        (0.002)            (0.017)     
## MSAcq1-3 (5-10]       0.003          0.006            0.058***     
##                      (0.003)        (0.003)            (0.015)     
## MSAcq1-3 (10,.]       0.001          -0.009            -0.006      
##                      (0.003)        (0.029)            (0.084)     
## MSAcq4-6 (0,1]       -0.002                                        
##                      (0.002)                                       
## MSAcq4-6 (1,5]       -0.0002                                       
##                      (0.002)                                       
## MSAcq4-6 (5-10]      -0.008*                                       
##                      (0.005)                                       
## MSAcq4-6 (10,.]     -0.067***                                      
##                      (0.008)                                       
## FICO score         -0.00003***    -0.00003***         0.0004***    
##                     (0.00000)      (0.00000)          (0.00002)    
## Debt-to-income     0.00003***      0.00002***                      
##                     (0.00001)      (0.00001)                       
## Full documentation                                    0.038***     
##                                                        (0.003)     
## log(Home value)     0.841***        0.826***          0.838***     
##                      (0.010)        (0.010)            (0.005)     
## Freddie Mac         -0.014***      -0.009***                       
##                      (0.001)        (0.001)                        
## New purchase        0.130***        0.110***          -0.093***    
##                      (0.003)        (0.004)            (0.010)     
## Alt-A                                                 -0.087***    
##                                                        (0.004)     
## Subprime                                              -0.035***    
##                                                        (0.005)     
## Year*MSA                Y              Y                  Y        
## Bank                    Y              Y                  Y        
## N                  23,889,212      13,718,103         3,272,969    
## Adjusted R2           0.817          0.778              0.743      
## ===================================================================

11.3 Bank-Year and MSA FE

regsample <- rbind(freddie,fannie)

regsample <- merge(regsample,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_year:=paste(seller_name,loanyr)]
regsample[,yr_msa:=paste(loanyr,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]

  r <- list()
  r[[1]] <- felm(log(orig_upb)~factor(msinc13G)+factor(msinc46G)+fico+dti+log(homevalue)+freddie+newpurchase|bank_year+msa|0|msa,data=regsample)

  r[[2]] <- felm(log(orig_upb)~factor(msinc13G)+fico+dti+log(homevalue)+freddie+newpurchase|bank_year+msa|0|msa,data=regsample[loanyr<=2007])

  

regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,bank_year:=paste(seller_name,loanyr)]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
regsample[,yr_msa:=paste(loanyr,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]

  r[[3]] <- felm(log(orig_upb)~factor(msinc13G)+fico+fulldocumentation+log(homevalue)+newpurchase+factor(assettype)|bank_year+msa|0|msa,data=regsample[originalterm==360 & armflag=="F"])  
  
stargazer(r,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,type="text",covariate.labels = covlabs,
          column.labels=c("GSE Sample","GSE Sample (<2008)","Non-agency sample"),column.separate=c(1,1,1),
          add.lines = list(c("Bank*Year", rep("Y",6)),c("MSA", rep("Y",6))))
## 
## ===================================================================
##                    GSE Sample  GSE Sample (<2008) Non-agency sample
##                        (1)            (2)                (3)       
## -------------------------------------------------------------------
## MSAcq1-3 (0,1]        0.007          0.003              0.006      
##                      (0.006)        (0.005)            (0.033)     
## MSAcq1-3 (1,5]        0.003          0.011*            -0.004      
##                      (0.005)        (0.006)            (0.034)     
## MSAcq1-3 (5-10]       0.007         0.023***           -0.012      
##                      (0.007)        (0.007)            (0.033)     
## MSAcq1-3 (10,.]      -0.008          0.012             -0.100      
##                      (0.008)        (0.027)            (0.073)     
## MSAcq4-6 (0,1]      0.017***                                       
##                      (0.005)                                       
## MSAcq4-6 (1,5]      0.019***                                       
##                      (0.004)                                       
## MSAcq4-6 (5-10]     0.018***                                       
##                      (0.006)                                       
## MSAcq4-6 (10,.]      0.026**                                       
##                      (0.012)                                       
## FICO score         -0.00003***    -0.00002***         0.0003***    
##                     (0.00000)      (0.00000)          (0.00002)    
## Debt-to-income     0.00003***      0.00002***                      
##                     (0.00001)      (0.00001)                       
## Full documentation                                    0.043***     
##                                                        (0.002)     
## log(Home value)     0.841***        0.822***          0.844***     
##                      (0.010)        (0.010)            (0.004)     
## Freddie Mac         -0.017***      -0.009***                       
##                      (0.001)        (0.002)                        
## New purchase        0.131***        0.112***          -0.080***    
##                      (0.003)        (0.004)            (0.009)     
## Alt-A                                                 -0.085***    
##                                                        (0.004)     
## Subprime                                              -0.035***    
##                                                        (0.005)     
## Bank*Year               Y              Y                  Y        
## MSA                     Y              Y                  Y        
## N                  23,889,212      13,718,103         3,272,969    
## Adjusted R2           0.815          0.777              0.754      
## ===================================================================

12 Table 4 - Panel C - Effect of Mergers on Loan Amount

regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))
regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
regsample[,high_suc_share:=ifelse(suc_share>0.05,1,0)]
regsample[,logoneoverfico:=log(1/fico)]
regsample[,yr_msa:=paste(loanyr,msa)]
regsample[,bank_year:=paste(seller_name,loanyr)]
regsample[,homevalue:= orig_upb*100/ltvorg]

12.1 Bank-MSA and Year FE

r <- list()
r[[1]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="0Prime"  & documentationtype %in% c("FU","NO","LO")])  
 
r[[2]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Alt-A"  & documentationtype %in% c("FU","NO","LO")])

r[[3]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Subprime"  & documentationtype %in% c("FU","NO","LO")])  

  
covlabs <- c("MSAcq1-3","FICO score","Full documentation","log(Home value)","New purchase")

stargazer(r,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,type="text",covariate.labels = covlabs,
          column.labels=c("Prime","Alt-A","Subprime"),column.separate=c(1,1,1),
          add.lines = list(c("Bank*MSA", rep("Y",6)),c("Year", rep("Y",6))))
## 
## ==================================================
##                      Prime     Alt-A     Subprime 
##                       (1)       (2)        (3)    
## --------------------------------------------------
## MSAcq1-3           1.401***   6.392***  -1.625*** 
##                     (0.503)   (0.697)    (0.523)  
## FICO score         0.0001**  -0.0004*** -0.0005***
##                    (0.00002)  (0.0001)   (0.0001) 
## Full documentation 0.044***   0.078***  -0.046*** 
##                     (0.002)   (0.004)    (0.004)  
## log(Home value)    0.891***   0.854***   0.830*** 
##                     (0.006)   (0.004)    (0.006)  
## New purchase       0.037***  -0.167***  -0.296*** 
##                     (0.008)   (0.008)    (0.011)  
## Bank*MSA               Y         Y          Y     
## Year                   Y         Y          Y     
## N                  1,560,476  535,050    538,243  
## Adjusted R2          0.801     0.656      0.640   
## ==================================================

12.2 Year-MSA and Bank FE

r <- list()
r[[1]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase|yr_msa+seller_name|0|yr_msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="0Prime"  & documentationtype %in% c("FU","NO","LO")])  
r[[2]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase|yr_msa+seller_name|0|yr_msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Alt-A"  & documentationtype %in% c("FU","NO","LO")])
r[[3]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase|yr_msa+seller_name|0|yr_msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Subprime"  & documentationtype %in% c("FU","NO","LO")])  

  
stargazer(r,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,type="text",covariate.labels = covlabs,
          column.labels=c("Prime","Alt-A","Subprime"),column.separate=c(1,1,1),
          add.lines = list(c("Year*MSA", rep("Y",6)),c("Bank", rep("Y",6))))
## 
## ==================================================
##                      Prime     Alt-A     Subprime 
##                       (1)       (2)        (3)    
## --------------------------------------------------
## MSAcq1-3             0.472    2.031***    -0.272  
##                     (0.384)   (0.388)    (0.315)  
## FICO score         0.0001**  -0.0004*** -0.0005***
##                    (0.00003)  (0.0001)   (0.0001) 
## Full documentation 0.047***   0.077***  -0.048*** 
##                     (0.002)   (0.003)    (0.004)  
## log(Home value)    0.891***   0.855***   0.831*** 
##                     (0.003)   (0.003)    (0.005)  
## New purchase       0.031***  -0.175***  -0.301*** 
##                     (0.005)   (0.010)    (0.009)  
## Year*MSA               Y         Y          Y     
## Bank                   Y         Y          Y     
## N                  1,560,476  535,050    538,243  
## Adjusted R2          0.798     0.651      0.636   
## ==================================================

12.3 Bank-Year and MSA FE

r <- list()
r[[1]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase|bank_year+msa|0|yr_msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="0Prime"  & documentationtype %in% c("FU","NO","LO")])  
r[[2]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase|bank_year+msa|0|yr_msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Alt-A"  & documentationtype %in% c("FU","NO","LO")])
r[[3]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase|bank_year+msa|0|yr_msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Subprime"  & documentationtype %in% c("FU","NO","LO")])  

  
stargazer(r,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,type="text",covariate.labels = covlabs,
          column.labels=c("Prime","Alt-A","Subprime"),column.separate=c(1,1,1),
          add.lines = list(c("Bank*Year", rep("Y",6)),c("MSA", rep("Y",6))))
## 
## ==================================================
##                      Prime     Alt-A     Subprime 
##                       (1)       (2)        (3)    
## --------------------------------------------------
## MSAcq1-3             0.034     -0.147    0.801**  
##                     (0.136)   (0.400)    (0.339)  
## FICO score          0.00001  -0.0004*** -0.0003***
##                    (0.00003)  (0.0001)   (0.0001) 
## Full documentation 0.043***   0.068***  -0.045*** 
##                     (0.002)   (0.003)    (0.004)  
## log(Home value)    0.900***   0.857***   0.823*** 
##                     (0.003)   (0.003)    (0.005)  
## New purchase       0.040***  -0.159***  -0.293*** 
##                     (0.005)   (0.010)    (0.009)  
## Bank*Year              Y         Y          Y     
## MSA                    Y         Y          Y     
## N                  1,560,476  535,050    538,243  
## Adjusted R2          0.810     0.668      0.645   
## ==================================================

13 Table 3 - Descriptive Statistics for HMDA Sample

cbsa_bnk <- read_fst("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Projects/Bank Mergers/data/cbsa_bnk.fst",as.data.table = T)

cbsa_bnk[,msinc13Q:=ifelse(msinc13<=0.0001,"Q0",
                           ifelse(msinc13<0.0027235,"Q1",
                                  ifelse(msinc13<0.0112596,"Q2",
                                         ifelse(msinc13<0.0366354,"Q3","Q4"))))]

cbsa_bnk[,msinc13G:=ifelse(msinc13<=0.0001,"0. 0",
                           ifelse(msinc13<0.01,"1. Less than 1pct",
                           ifelse(msinc13<0.05,"2. 1 - 5pct",
                                  ifelse(msinc13<0.1,"3. 5pct - 10pct", "4. More than 10pct"))))]
                                         

cbsa_bnk[,msinc46Q:=ifelse(msinc46<=0.0001,"Q0",
                           ifelse(msinc46<0.0027235,"Q1",
                                  ifelse(msinc46<0.0112596,"Q2",
                                         ifelse(msinc46<0.0366354,"Q3","Q4"))))]

cbsa_bnk[,msinc46G:=ifelse(msinc46<=0.0001,"0. 0",
                           ifelse(msinc46<0.01,"1. Less than 1pct",
                           ifelse(msinc46<0.05,"2. 1 - 5pct",
                                  ifelse(msinc46<0.1,"3. 5pct - 10pct", "4. More than 10pct"))))]
# 
cbsa_share<- read_fst("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Projects/Bank Mergers/data/cbsa_share.fst",as.data.table = T)

cbsa_share[,msinc13G:=ifelse(msinc13<=0.0001,"0. 0",
                           ifelse(msinc13<0.01,"1. Less than 1pct",
                           ifelse(msinc13<0.05,"2. 1 - 5pct",
                                  ifelse(msinc13<0.1,"3. 5pct - 10pct", "4. More than 10pct"))))]

cbsa_bnk_partrend <- read_fst("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Projects/Bank Mergers/data/cbsa_bnk_partrend.fst",as.data.table = T)

cbsa_share_partrend <- read_fst("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Projects/Bank Mergers/data/cbsa_share_partrend.fst",as.data.table = T)
files <- NULL
files  <- list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/pre2004/OO_NP/",full.names = TRUE)
# files  <- c(files,list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/pre2004/OO_RF/",full.names = TRUE))
files  <- c(files,list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/OO_NP/",full.names = TRUE))
# files  <- c(files,list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/OO_RF/",full.names = TRUE))

files <- files[substr(files,100,103) %in% as.character(2000:2017)] #c("2014","2015","2016","2017","2018")

hmda = lapply(files, read_fst, as.data.table = TRUE,
              columns=c("asofdate","respondentid","agencycode","state","countycode","msa","actiontaken","applicantrace1","applicantincome","amountofloan","typeofpurchaser","typeofloan","applicantethnicity"))
hmda <- do.call(rbind , hmda)
# hmda <- hmda[asofd•ate>=2000 & asofdate<2017]

hmda[,lender:=paste0(agencycode,"-",respondentid)]
hmda[,countycode:=paste0(state,countycode)]

hmda[,approved:=ifelse(actiontaken %in% c("1"),1,0)]
hmda[,sold:=ifelse(typeofpurchaser !="0" & actiontaken=="1",1,ifelse(actiontaken=="1",0,NA))]
hmda[,nonwhite:=ifelse(applicantrace1=="5",0,1)]




lender_bank <- read_fst("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Projects/Bank Mergers/data/lender_bank.fst",as.data.table = T)

hmda <- merge(hmda,lender_bank,by="lender",all.x=T)

cbsa_fips <- fread("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Crosswalk Files/cbsa_countyfips.csv")
cbsa_fips[,fips:=ifelse(nchar(fips)==4,paste0("0",fips),paste0(fips))]

hmda <- merge(hmda,cbsa_fips,by.x="countycode",by.y="fips",all.x=T)


hmda <- merge(hmda,cbsa_bnk,by.x=c("bank","cbsa","asofdate"),by.y=c("bank","cbsa","acyr"),all.x=T)

hmda[,msinc13:=ifelse(is.na(msinc13),0.00001,msinc13)]
hmda[,msinc46:=ifelse(is.na(msinc46),0.00001,msinc46)]

hmda[,bank:=ifelse(is.na(bank),lender,bank)]
hmda[,msinc13G:=ifelse(is.na(msinc13G),"0. 0",msinc13G)]
hmda[,msinc46G:=ifelse(is.na(msinc46G),"0. 0",msinc46G)]

hmda[,bank_msa:=paste(bank,cbsa)]
hmda <- hmda[!is.na(cbsa)]

hmda[,applicantincome:=as.numeric(applicantincome)]
hmda[,amountofloan:=as.numeric(amountofloan)]

hmda <- hmda[applicantincome>0 & amountofloan>0]

hmda[,msinc13G:=factor(msinc13G)]
# hmda <- within(hmda, msinc13G <- relevel(msinc13G, ref = 1))
hmda[,msinc46G:=as.factor(msinc46G)]

hmda[,hispanic:=ifelse(applicantethnicity=="1",1,0)]
hmda[,race:=ifelse(hispanic==1,"hispanic",ifelse(applicantrace1=="5","0white",ifelse(applicantrace1=="3","black","other")))]
hmda[,black:=ifelse(applicantrace1=="3",1,0)]

hmda[,actiontaken:=as.numeric(actiontaken)]
hmda[,denied:=ifelse(actiontaken %in% c(3,7),1,0)]
hmda[,typeofloan:=as.numeric(typeofloan)]

hmda[,medianincome:=median(applicantincome,na.rm=T),by=asofdate]
hmda[,lowincome:=ifelse(applicantincome<medianincome,1,0)]

hmda[,racecat:=ifelse(hispanic==1,"hispanic",
                      ifelse(applicantrace1=="5","white",
                             ifelse(applicantrace1=="3","black",
                                    ifelse(applicantrace1=="2","asian",
                                           ifelse(applicantrace1=="4","native","na")))))]

hmda[,msa_yr:=paste(asofdate,cbsa)]

hmda[,bank_yr:=paste(bank,asofdate)]
conflimit <- fread("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Projects/Bank Mergers/data/conforminglimits.csv")
names(conflimit) <- c("asofdate","conflimit")
conflimit[,conflimit:=floor(conflimit/1000)]

hmda <- merge(hmda,conflimit,by="asofdate")
hmda[,jumbo:=ifelse(typeofloan==1 & amountofloan>conflimit,1,ifelse(typeofloan==1,0,NA))]

13.1 Panel A: Conventional Loans

vars <- c("amountofloan","applicantincome","approved","sold","nonwhite","asofdate","hispanic","black","jumbo")

covlabs <- c("Loan amount","Income '000","Approved","Secutitized","Non-white","Year","Hispanic","Black","Jumbo")

stargazer(hmda[typeofloan==1,..vars],type="text",summary.stat = c("N","mean","sd","p25","median","p75"),covariate.labels = covlabs ,title = "New purchases")
## 
## New purchases
## ==================================================================
## Statistic       N        Mean    St. Dev. Pctl(25) Median Pctl(75)
## ------------------------------------------------------------------
## Loan amount 45,419,402  226.928  266.683    104     180     297   
## Income '000 45,419,402  104.931  129.053     53      80     122   
## Approved    45,419,402   0.580    0.494      0       1       1    
## Secutitized 26,331,998   0.753    0.431    1.000   1.000   1.000  
## Non-white   45,419,402   0.291    0.454      0       0       1    
## Year        45,419,402 2,008.843  4.369    2,005   2,007   2,013  
## Hispanic    45,419,402   0.118    0.323      0       0       0    
## Black       45,419,402   0.069    0.254      0       0       0    
## Jumbo       45,419,402   0.109    0.312      0       0       0    
## ------------------------------------------------------------------

13.2 Panel B: FHA Loans

stargazer(hmda[typeofloan==2,..vars],type="text",summary.stat = c("N","mean","sd","p25","median","p75"),covariate.labels = covlabs ,title = "New purchases")
## 
## New purchases
## ==================================================================
## Statistic       N        Mean    St. Dev. Pctl(25) Median Pctl(75)
## ------------------------------------------------------------------
## Loan amount 13,804,879  176.134  117.800    113     156     218   
## Income '000 13,804,879  64.726    58.762     40      56      79   
## Approved    13,804,879   0.530    0.499      0       1       1    
## Secutitized 7,320,170    0.929    0.256    1.000   1.000   1.000  
## Non-white   13,804,879   0.270    0.444      0       0       1    
## Year        13,804,879 2,011.284  3.605    2,009   2,011   2,014  
## Hispanic    13,804,879   0.184    0.388      0       0       0    
## Black       13,804,879   0.125    0.331      0       0       0    
## ------------------------------------------------------------------

13.3 Panel C - Race Distrubution

racedist <- hmda[typeofloan==1,.N,by=racecat]
racedist[,frac:=N/sum(N)]

stargazer(racedist,summary = F,title = "New purchases - Conventional",type="text")
## 
## New purchases - Conventional
## ===========================
##   racecat      N      frac 
## ---------------------------
## 1  white   27,598,083 0.608
## 2    na    6,070,242  0.134
## 3 hispanic 5,371,900  0.118
## 4  asian   3,140,842  0.069
## 5  black   3,055,700  0.067
## 6  native   182,635   0.004
## ---------------------------
racedist <- hmda[typeofloan==2,.N,by=racecat]
racedist[,frac:=N/sum(N)]

stargazer(racedist,summary = F,title = "New purchases - FHA",type="text")
## 
## New purchases - FHA
## ==========================
##   racecat      N     frac 
## --------------------------
## 1  white   7,775,513 0.563
## 2    na    1,319,509 0.096
## 3 hispanic 2,541,756 0.184
## 4  black   1,692,617 0.123
## 5  asian    419,495  0.030
## 6  native   55,989   0.004
## --------------------------

14 Table 6 - Panel A - Effect on Loan Approval

14.1 Bank-MSA and Year FE

r <- list()
r[[1]] <- felm(approved~msinc13+msinc46+log(applicantincome)+log(amountofloan)+factor(race)|bank_msa+asofdate|0|msa,data=hmda[actiontaken<=3 & typeofloan==1])
r[[2]] <- felm(approved~msinc13+msinc46+log(applicantincome)+log(amountofloan)+factor(race)|bank_msa+asofdate|0|msa,data=hmda[actiontaken<=3 & typeofloan==2])
r[[3]] <- felm(approved~msinc13*lowincome+msinc46*lowincome+log(amountofloan)+factor(race)|bank_msa+asofdate|0|msa,data=hmda[typeofloan==1 & actiontaken<=3])
r[[4]] <- felm(approved~msinc13*lowincome+msinc46*lowincome+log(amountofloan)+factor(race)|bank_msa+asofdate|0|msa,data=hmda[typeofloan==2 & actiontaken<=3])
r[[5]] <- felm(approved~msinc13*factor(race)+msinc46*factor(race)+log(applicantincome)+log(amountofloan)|bank_msa+asofdate|0|msa,data=hmda[typeofloan==1 & actiontaken<=3])
r[[6]] <- felm(approved~msinc13*factor(race)+msinc46*factor(race)+log(applicantincome)+log(amountofloan)|bank_msa+asofdate|0|msa,data=hmda[typeofloan==2 & actiontaken<=3])



covlabs <- c("MSInc1-3","Low income","MSInc4-6","log(Income '000)","log(Loan amount '000)","MSInc1-3*Black","MSInc1-3*Hispanic","MSInc1-3*Asian/Other","MSInc4-6*Black","MSInc4-6*Hispanic","MSInc4-6*Asian/Other","Black","Hispanic","Asian/Other","MSInc1-3*Low income","MSInc4-6*Low income")

stargazer(r,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,type="text",
          column.labels=c("Conventional","FHA","Conventional","FHA","Conventional","FHA"),
          add.lines = list(c("Bank*MSA", rep("Y",6)),c("Year", rep("Y",6))),
          covariate.labels = covlabs)
## 
## ==========================================================================================
##                       Conventional    FHA    Conventional    FHA    Conventional    FHA   
##                           (1)         (2)        (3)         (4)        (5)         (6)   
## ------------------------------------------------------------------------------------------
## MSInc1-3                0.651***   -0.541***   0.675***   -0.279***   0.589***   -0.326***
##                         (0.050)     (0.050)    (0.053)     (0.054)    (0.053)     (0.052) 
## Low income                                    -0.032***   -0.025***                       
##                                                (0.001)     (0.002)                        
## MSInc4-6                1.144***   -0.686***   1.599***    -0.253*    1.233***   -0.405***
##                         (0.190)     (0.136)    (0.230)     (0.142)    (0.161)     (0.120) 
## log(Income '000)        0.035***   0.070***                           0.035***   0.070*** 
##                         (0.001)     (0.002)                           (0.001)     (0.002) 
## log(Loan amount '000)   -0.002*      0.004     0.005***   0.043***    -0.002**     0.003  
##                         (0.001)     (0.002)    (0.001)     (0.002)    (0.001)     (0.002) 
## MSInc1-3*Black                                                         0.062     -0.549***
##                                                                       (0.131)     (0.079) 
## MSInc1-3*Hispanic                                                     -0.402**   -0.644***
##                                                                       (0.160)     (0.077) 
## MSInc1-3*Asian/Other                                                  0.302***    -0.094  
##                                                                       (0.044)     (0.073) 
## MSInc4-6*Black                                                       -1.371***   -0.587***
##                                                                       (0.232)     (0.195) 
## MSInc4-6*Hispanic                                                    -1.801***   -0.886***
##                                                                       (0.297)     (0.217) 
## MSInc4-6*Asian/Other                                                   0.284     -0.567***
##                                                                       (0.189)     (0.157) 
## Black                  -0.100***   -0.075***  -0.102***   -0.079***  -0.099***   -0.074***
##                         (0.003)     (0.002)    (0.003)     (0.002)    (0.003)     (0.002) 
## Hispanic               -0.053***   -0.039***  -0.055***   -0.046***  -0.052***   -0.038***
##                         (0.002)     (0.001)    (0.002)     (0.002)    (0.002)     (0.001) 
## Asian/Other            -0.053***   -0.054***  -0.053***   -0.057***  -0.053***   -0.054***
##                         (0.002)     (0.002)    (0.002)     (0.002)    (0.002)     (0.002) 
## MSInc1-3*Low income                            -0.125**   -0.431***                       
##                                                (0.055)     (0.058)                        
## MSInc4-6*Low income                           -1.259***   -0.637***                       
##                                                (0.188)     (0.124)                        
## Bank*MSA                   Y           Y          Y           Y          Y           Y    
## Year                       Y           Y          Y           Y          Y           Y    
## N                      33,542,095  8,955,161  33,542,095  8,955,161  33,542,095  8,955,161
## Adjusted R2              0.161       0.109      0.160       0.106      0.161       0.109  
## ==========================================================================================

14.2 MSA-Year and Bank FE

r <- list()
r[[1]] <- felm(approved~msinc13+msinc46+log(applicantincome)+log(amountofloan)+factor(race)|msa_yr+bank|0|msa,data=hmda[actiontaken<=3 & typeofloan==1])
r[[2]] <- felm(approved~msinc13+msinc46+log(applicantincome)+log(amountofloan)+factor(race)|msa_yr+bank|0|msa,data=hmda[actiontaken<=3 & typeofloan==2])
r[[3]] <- felm(approved~msinc13*lowincome+msinc46*lowincome+log(amountofloan)+factor(race)|msa_yr+bank|0|msa,data=hmda[typeofloan==1 & actiontaken<=3])
r[[4]] <- felm(approved~msinc13*lowincome+msinc46*lowincome+log(amountofloan)+factor(race)|msa_yr+bank|0|msa,data=hmda[typeofloan==2 & actiontaken<=3])
r[[5]] <- felm(approved~msinc13*factor(race)+msinc46*factor(race)+log(applicantincome)+log(amountofloan)|msa_yr+bank|0|msa,data=hmda[typeofloan==1 & actiontaken<=3])
r[[6]] <- felm(approved~msinc13*factor(race)+msinc46*factor(race)+log(applicantincome)+log(amountofloan)|msa_yr+bank|0|msa,data=hmda[typeofloan==2 & actiontaken<=3])



covlabs <- c("MSInc1-3","Low income","MSInc4-6","log(Income '000)","log(Loan amount '000)","MSInc1-3*Black","MSInc1-3*Hispanic","MSInc1-3*Asian/Other","MSInc4-6*Black","MSInc4-6*Hispanic","MSInc4-6*Asian/Other","Black","Hispanic","Asian/Other","MSInc1-3*Low income","MSInc4-6*Low income")

stargazer(r,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,type="text",
          column.labels=c("Conventional","FHA","Conventional","FHA","Conventional","FHA"),
          add.lines = list(c("Bank*MSA", rep("Y",6)),c("Year", rep("Y",6))),
          covariate.labels = covlabs)
## 
## ==========================================================================================
##                       Conventional    FHA    Conventional    FHA    Conventional    FHA   
##                           (1)         (2)        (3)         (4)        (5)         (6)   
## ------------------------------------------------------------------------------------------
## MSInc1-3                0.496***   -0.546***   0.544***   -0.316***   0.422***   -0.320***
##                         (0.047)     (0.056)    (0.046)     (0.063)    (0.048)     (0.063) 
## Low income                                    -0.034***   -0.025***                       
##                                                (0.001)     (0.002)                        
## MSInc4-6                0.912***   -0.259***   1.378***     0.097     0.997***    -0.015  
##                         (0.145)     (0.097)    (0.186)     (0.097)    (0.121)     (0.084) 
## log(Income '000)        0.037***   0.070***                           0.037***   0.070*** 
##                         (0.001)     (0.002)                           (0.001)     (0.002) 
## log(Loan amount '000)   -0.002*      0.003     0.005***   0.043***    -0.002*      0.003  
##                         (0.001)     (0.002)    (0.001)     (0.002)    (0.001)     (0.002) 
## MSInc1-3*Black                                                         0.164     -0.577***
##                                                                       (0.139)     (0.093) 
## MSInc1-3*Hispanic                                                     -0.388**   -0.675***
##                                                                       (0.166)     (0.097) 
## MSInc1-3*Asian/Other                                                  0.352***    -0.117  
##                                                                       (0.037)     (0.078) 
## MSInc4-6*Black                                                       -1.119***   -0.509** 
##                                                                       (0.220)     (0.209) 
## MSInc4-6*Hispanic                                                    -1.785***   -1.040***
##                                                                       (0.259)     (0.301) 
## MSInc4-6*Asian/Other                                                   0.272     -0.520***
##                                                                       (0.178)     (0.163) 
## Black                  -0.106***   -0.078***  -0.108***   -0.081***  -0.106***   -0.077***
##                         (0.003)     (0.002)    (0.003)     (0.002)    (0.003)     (0.002) 
## Hispanic               -0.052***   -0.039***  -0.055***   -0.046***  -0.051***   -0.037***
##                         (0.002)     (0.001)    (0.002)     (0.002)    (0.002)     (0.001) 
## Asian/Other            -0.056***   -0.057***  -0.056***   -0.060***  -0.056***   -0.057***
##                         (0.002)     (0.002)    (0.002)     (0.002)    (0.002)     (0.002) 
## MSInc1-3*Low income                            -0.144**   -0.379***                       
##                                                (0.058)     (0.057)                        
## MSInc4-6*Low income                           -1.257***   -0.526***                       
##                                                (0.189)     (0.108)                        
## Bank*MSA                   Y           Y          Y           Y          Y           Y    
## Year                       Y           Y          Y           Y          Y           Y    
## N                      33,542,095  8,955,161  33,542,095  8,955,161  33,542,095  8,955,161
## Adjusted R2              0.149       0.095      0.148       0.091      0.149       0.095  
## ==========================================================================================

14.2.0.1 Bank-Year and MSA FE

r <- list()
r[[1]] <- felm(approved~msinc13+msinc46+log(applicantincome)+log(amountofloan)+factor(race)|bank_yr+asofdate|0|msa,data=hmda[actiontaken<=3 & typeofloan==1])
r[[2]] <- felm(approved~msinc13+msinc46+log(applicantincome)+log(amountofloan)+factor(race)|bank_yr+asofdate|0|msa,data=hmda[actiontaken<=3 & typeofloan==2])
r[[3]] <- felm(approved~msinc13*lowincome+msinc46*lowincome+log(amountofloan)+factor(race)|bank_yr+asofdate|0|msa,data=hmda[typeofloan==1 & actiontaken<=3])
r[[4]] <- felm(approved~msinc13*lowincome+msinc46*lowincome+log(amountofloan)+factor(race)|bank_yr+asofdate|0|msa,data=hmda[typeofloan==2 & actiontaken<=3])
r[[5]] <- felm(approved~msinc13*factor(race)+msinc46*factor(race)+log(applicantincome)+log(amountofloan)|bank_yr+asofdate|0|msa,data=hmda[typeofloan==1 & actiontaken<=3])
r[[6]] <- felm(approved~msinc13*factor(race)+msinc46*factor(race)+log(applicantincome)+log(amountofloan)|bank_yr+asofdate|0|msa,data=hmda[typeofloan==2 & actiontaken<=3])


stargazer(r,no.space = T,align = T,omit.stat=c("ser","f", "rsq"),style = "qje",omit.table.layout = "n", dep.var.labels.include = FALSE,type="text",
          column.labels=c("Conventional","FHA","Conventional","FHA","Conventional","FHA"),
          add.lines = list(c("Bank*Year", rep("Y",6)),c("MSA", rep("Y",6))),
          covariate.labels = covlabs)
## 
## ==========================================================================================
##                       Conventional    FHA    Conventional    FHA    Conventional    FHA   
##                           (1)         (2)        (3)         (4)        (5)         (6)   
## ------------------------------------------------------------------------------------------
## MSInc1-3                 -0.007    -0.425***    0.018      -0.233      -0.011     -0.205  
##                         (0.096)     (0.162)    (0.096)     (0.162)    (0.097)     (0.157) 
## Low income                                    -0.029***   -0.025***                       
##                                                (0.001)     (0.002)                        
## MSInc4-6                0.348**     0.350*     0.753***    0.570**    0.490***   0.571*** 
##                         (0.159)     (0.186)    (0.142)     (0.256)    (0.165)     (0.149) 
## log(Income '000)        0.032***   0.070***                           0.032***   0.070*** 
##                         (0.001)     (0.002)                           (0.001)     (0.002) 
## log(Loan amount '000)  -0.005***   -0.014***    0.001     0.023***   -0.005***   -0.014***
##                         (0.002)     (0.004)    (0.002)     (0.004)    (0.002)     (0.004) 
## MSInc1-3*Black                                                         -0.067    -0.605***
##                                                                       (0.175)     (0.100) 
## MSInc1-3*Hispanic                                                    -0.531***   -0.693***
##                                                                       (0.181)     (0.109) 
## MSInc1-3*Asian/Other                                                  0.274***    -0.103  
##                                                                       (0.092)     (0.078) 
## MSInc4-6*Black                                                       -1.337***   -0.681***
##                                                                       (0.225)     (0.189) 
## MSInc4-6*Hispanic                                                    -2.069***   -0.920***
##                                                                       (0.403)     (0.344) 
## MSInc4-6*Asian/Other                                                   0.005     -0.543***
##                                                                       (0.102)     (0.200) 
## Black                  -0.103***   -0.083***  -0.105***   -0.087***  -0.103***   -0.081***
##                         (0.004)     (0.003)    (0.004)     (0.003)    (0.004)     (0.003) 
## Hispanic               -0.063***   -0.049***  -0.065***   -0.056***  -0.062***   -0.048***
##                         (0.002)     (0.002)    (0.002)     (0.002)    (0.002)     (0.002) 
## Asian/Other            -0.059***   -0.061***  -0.059***   -0.063***  -0.059***   -0.060***
##                         (0.002)     (0.002)    (0.002)     (0.002)    (0.002)     (0.002) 
## MSInc1-3*Low income                             -0.095    -0.333***                       
##                                                (0.094)     (0.058)                        
## MSInc4-6*Low income                           -1.079***   -0.328**                        
##                                                (0.138)     (0.163)                        
## Bank*Year                  Y           Y          Y           Y          Y           Y    
## MSA                        Y           Y          Y           Y          Y           Y    
## N                      33,542,095  8,955,161  33,542,095  8,955,161  33,542,095  8,955,161
## Adjusted R2              0.165       0.109      0.164       0.105      0.165       0.109  
## ==========================================================================================