Paquetes Utilizados

library("foreign")
library("olsrr")
library("mctest")
library("GGally")
library('ggplot2')

Base de datos

importacion <- read.dta("Importaciones.dta")
head(importacion)
##   OBS Importacion  PBI Consumo Inversion
## 1   1         159 1493    1081        42
## 2   2         191 1755    1269        31
## 3   3         227 2021    1460        21
## 4   4         276 2319    1643        51
## 5   5         333 2698    1866        39
## 6   6         490 3234    2238        70

Diagrama de dispersión

ggplot(data=importacion,aes(PBI,Importacion)) + geom_point() + 
  labs(title="Figura 01: Diagrama de Dispersiñón",x="PBI",y="Importación")

ggplot(data=importacion,aes(Consumo,Importacion)) + geom_point() + 
  labs(title="Figura 02: Diagrama de Dispersión",x="Consumo",y="Importación")

ggplot(data=importacion,aes(Inversion,Importacion)) + geom_point() + 
  labs(title="Figura 03: Diagrama de Dispersión",x="Inversion",y="Importación")

Estimación del Modelo con PBI

modelo_b<-lm(Importacion~PBI,data=importacion)
summary(modelo_b)
## 
## Call:
## lm(formula = Importacion ~ PBI, data = importacion)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -40.646 -11.996   2.491  12.301  40.143 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.586e+02  2.136e+01  -7.423 1.44e-06 ***
## PBI          1.934e-01  8.704e-03  22.218 1.88e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 22.8 on 16 degrees of freedom
## Multiple R-squared:  0.9686, Adjusted R-squared:  0.9666 
## F-statistic: 493.7 on 1 and 16 DF,  p-value: 1.879e-13

\[ y_i = -158.6 + 0.1934x_i \]

Estimación del Modelo

modelo<-lm(Importacion~PBI+Consumo+Inversion,data=importacion)
summary(modelo)
## 
## Call:
## lm(formula = Importacion ~ PBI + Consumo + Inversion, data = importacion)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.208 -18.354  -3.479  12.973  41.008 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -197.2511    41.2525  -4.782 0.000293 ***
## PBI            0.0322     0.1869   0.172 0.865650    
## Consumo        0.2427     0.2854   0.851 0.409268    
## Inversion      0.4142     0.3223   1.285 0.219545    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 22.58 on 14 degrees of freedom
## Multiple R-squared:  0.973,  Adjusted R-squared:  0.9673 
## F-statistic: 168.4 on 3 and 14 DF,  p-value: 3.212e-11

\[ y_i = -197.2511 + 0.0322*PBI + 0.2427*Consumo + 0.4142*Inversión \]

Evaluación de los residuales

Normalidad

Gráfico Q-Q

ols_plot_resid_qq(modelo)

Prueba de Normalidad

ols_test_normality(modelo)
## -----------------------------------------------
##        Test             Statistic       pvalue  
## -----------------------------------------------
## Shapiro-Wilk              0.9472         0.3822 
## Kolmogorov-Smirnov        0.1295         0.8864 
## Cramer-von Mises          1.5556          1e-04 
## Anderson-Darling          0.3177         0.5098 
## -----------------------------------------------

Correlación entre residuos observados y esperados

ols_test_correlation(modelo)
## [1] 0.9796756

Gráfico residuales vs ajustados

ols_plot_resid_fit(modelo)

Histograma de los residuales

ols_plot_resid_hist(modelo)

Evaluación de la Colinealidad

VIF

ols_vif_tol(modelo)
##   Variables   Tolerance        VIF
## 1       PBI 0.002128828 469.742135
## 2   Consumo 0.002130509 469.371343
## 3 Inversion 0.952492105   1.049877
modelo22<-lm(PBI~Consumo,data=importacion)
summary(modelo22)
## 
## Call:
## lm(formula = PBI ~ Consumo, data = importacion)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -48.560 -24.798   2.318  15.206  61.059 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -178.86840   30.36845   -5.89 2.28e-05 ***
## Consumo        1.52591    0.01764   86.52  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30.24 on 16 degrees of freedom
## Multiple R-squared:  0.9979, Adjusted R-squared:  0.9977 
## F-statistic:  7485 on 1 and 16 DF,  p-value: < 2.2e-16

Tolerancia e Indice de Condición

ols_coll_diag(modelo)
## Tolerance and Variance Inflation Factor
## ---------------------------------------
##   Variables   Tolerance        VIF
## 1       PBI 0.002128828 469.742135
## 2   Consumo 0.002130509 469.371343
## 3 Inversion 0.952492105   1.049877
## 
## 
## Eigenvalue and Condition Index
## ------------------------------
##     Eigenvalue Condition Index   intercept          PBI      Consumo  Inversion
## 1 3.828206e+00        1.000000 0.001099435 8.996646e-06 7.863753e-06 0.01021285
## 2 1.328711e-01        5.367627 0.004243486 1.095900e-04 9.077341e-05 0.94601139
## 3 3.886081e-02        9.925256 0.304450325 5.956447e-04 3.248061e-04 0.04224592
## 4 6.258059e-05      247.330562 0.690206755 9.992858e-01 9.995766e-01 0.00152984

Evaluación del ajuste del modelo

Gráfico extendido de los resiuales del ajuste

ols_plot_resid_fit_spread(modelo)

Correlaciones parciales

ols_correlations(modelo)
##                Correlations                 
## -------------------------------------------
## Variable     Zero Order    Partial    Part  
## -------------------------------------------
## PBI               0.984      0.046    0.008 
## Consumo           0.985      0.222    0.037 
## Inversion         0.266      0.325    0.056 
## -------------------------------------------

Graficos de observaciones vs predicciones

ols_plot_obs_fit(modelo)

Panel de Diagnósticos

ols_plot_diagnostics(modelo)

Eliminación de variabel colineal

ols_vif_tol(modelo)
##   Variables   Tolerance        VIF
## 1       PBI 0.002128828 469.742135
## 2   Consumo 0.002130509 469.371343
## 3 Inversion 0.952492105   1.049877
modelo2<-lm(Importacion~PBI+Inversion,data=importacion)
summary(modelo2)
## 
## Call:
## lm(formula = Importacion ~ PBI + Inversion, data = importacion)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -36.69 -15.69   2.48  11.55  39.60 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.678e+02  2.219e+01  -7.562 1.71e-06 ***
## PBI          1.910e-01  8.748e-03  21.833 8.82e-13 ***
## Inversion    4.049e-01  3.191e-01   1.269    0.224    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 22.37 on 15 degrees of freedom
## Multiple R-squared:  0.9716, Adjusted R-squared:  0.9679 
## F-statistic:   257 on 2 and 15 DF,  p-value: 2.478e-12
modelo3<-lm(Importacion~PBI,data=importacion)
summary(modelo3)
## 
## Call:
## lm(formula = Importacion ~ PBI, data = importacion)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -40.646 -11.996   2.491  12.301  40.143 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.586e+02  2.136e+01  -7.423 1.44e-06 ***
## PBI          1.934e-01  8.704e-03  22.218 1.88e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 22.8 on 16 degrees of freedom
## Multiple R-squared:  0.9686, Adjusted R-squared:  0.9666 
## F-statistic: 493.7 on 1 and 16 DF,  p-value: 1.879e-13

Panel de Diagnósticos

ols_plot_diagnostics(modelo3)

importacion$log.importacion <-log(importacion$Importacion)
importacion$log.PBI <-log(importacion$PBI)
modelo4<-lm(log.importacion~log.PBI,data=importacion)
summary(modelo4)
## 
## Call:
## lm(formula = log.importacion ~ log.PBI, data = importacion)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.116670 -0.040118  0.005274  0.043508  0.073848 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -5.78151    0.39756  -14.54 1.21e-10 ***
## log.PBI      1.47452    0.05134   28.72 3.40e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.05638 on 16 degrees of freedom
## Multiple R-squared:  0.981,  Adjusted R-squared:  0.9798 
## F-statistic: 824.9 on 1 and 16 DF,  p-value: 3.404e-15

Panel de Diagnósticos

ols_plot_diagnostics(modelo4)

MODELO FINAL

\[y =\beta_0 e^{\beta_1 x_1}\] \[log(y)=log(\beta_0)+\beta_1 x_1\]

modelo5<-lm(log.importacion~PBI,data=importacion)
summary(modelo5)
## 
## Call:
## lm(formula = log.importacion ~ PBI, data = importacion)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.06727 -0.02479 -0.01385  0.02500  0.10534 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 4.157e+00  4.281e-02   97.09   <2e-16 ***
## PBI         6.204e-04  1.744e-05   35.56   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.04568 on 16 degrees of freedom
## Multiple R-squared:  0.9875, Adjusted R-squared:  0.9867 
## F-statistic:  1265 on 1 and 16 DF,  p-value: < 2.2e-16

\[log(y)=4.157+0.0006204 x_1\]

\[y =63.8796 e^{0.00006204 x_1}\]

ols_plot_diagnostics(modelo5)