This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.
library(XLConnect)
package 㤼㸱XLConnect㤼㸲 was built under R version 4.0.5XLConnect 1.0.3 by Mirai Solutions GmbH [aut],
Martin Studer [cre],
The Apache Software Foundation [ctb, cph] (Apache POI),
Graph Builder [ctb, cph] (Curvesapi Java library)
https://mirai-solutions.ch
https://github.com/miraisolutions/xlconnect
library(agricolae)
package 㤼㸱agricolae㤼㸲 was built under R version 4.0.5
library(readxl)
package 㤼㸱readxl㤼㸲 was built under R version 4.0.5
library(readxl)
Rendimiento_papa_facultad_t_ha_1 <- read_excel("C:/Users/Eduardo/Downloads/Rendimiento papa facultad t-ha-1.xlsx")
View(Rendimiento_papa_facultad_t_ha_1)
Datos<- read_excel("C:/Users/Eduardo/Downloads/Rendimiento papa facultad t-ha-1.xlsx")
attach(Datos)
names(Datos)
[1] "Tratamientos" "Tratamineto" "planta" "Riche" "Pareja" "Cero"
[7] "total"
str(Datos)
tibble [25 x 7] (S3: tbl_df/tbl/data.frame)
$ Tratamientos: chr [1:25] "C- (0 L/ha TV) 75% FC" NA NA NA ...
$ Tratamineto : num [1:25] 1 1 1 1 1 2 2 2 2 2 ...
$ planta : num [1:25] 1 2 3 4 5 1 2 3 4 5 ...
$ Riche : num [1:25] 4.28 1.56 3 4.33 1.33 ...
$ Pareja : num [1:25] 12.61 16.94 13.28 17.5 2.78 ...
$ Cero : num [1:25] 13.83 19.11 10.72 0 3.78 ...
$ total : num [1:25] 30.72 37.61 27 21.83 7.89 ...
plan<-factor(planta)
Trat<-factor(Tratamineto)
Modelo<-lm(Riche~Trat+plan)
ANOVA<-aov(Modelo)
summary(ANOVA)
Df Sum Sq Mean Sq F value Pr(>F)
Trat 4 12.13 3.032 3.541 0.0298 *
plan 4 13.67 3.417 3.990 0.0197 *
Residuals 16 13.70 0.856
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
tratam<- LSD.test(y = ANOVA, trt = "Trat",group = T, console = T)
Study: ANOVA ~ "Trat"
LSD t Test for Riche
Mean Square Error: 0.856418
Trat, means and individual ( 95 %) CI
Alpha: 0.05 ; DF Error: 16
Critical Value of t: 2.119905
least Significant Difference: 1.240764
Treatments with the same letter are not significantly different.
bar.group(x = tratam$groups,
ylim=c(0,6),
main=" Comparación rendimiento papa tamaño Riche ",
xlab="Tratamiento ",
ylab="Rendimiento (ton/ha) ",
col="grey")
Modelo<-lm(Pareja~Trat+plan)
ANOVA<-aov(Modelo)
summary(ANOVA)
Df Sum Sq Mean Sq F value Pr(>F)
Trat 4 46.6 11.65 0.463 0.7619
plan 4 241.2 60.31 2.396 0.0935 .
Residuals 16 402.7 25.17
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
tratam<- LSD.test(y = ANOVA, trt = "Trat",group = T, console = T)
Study: ANOVA ~ "Trat"
LSD t Test for Pareja
Mean Square Error: 25.16957
Trat, means and individual ( 95 %) CI
Alpha: 0.05 ; DF Error: 16
Critical Value of t: 2.119905
least Significant Difference: 6.726426
Treatments with the same letter are not significantly different.
bar.group(x = tratam$groups,
ylim=c(0,20),
main=" Comparación rendimiento papa tamaño Pareja ",
xlab="Tratamiento ",
ylab="Rendimiento (ton/ha) ",
col="grey")
Modelo<-lm(Cero~Trat+plan)
ANOVA<-aov(Modelo)
summary(ANOVA)
Df Sum Sq Mean Sq F value Pr(>F)
Trat 4 85.9 21.48 1.769 0.184
plan 4 605.8 151.45 12.475 8.52e-05 ***
Residuals 16 194.2 12.14
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
tratam<- LSD.test(y = ANOVA, trt = "Trat",group = T, console = T)
Study: ANOVA ~ "Trat"
LSD t Test for Cero
Mean Square Error: 12.14032
Trat, means and individual ( 95 %) CI
Alpha: 0.05 ; DF Error: 16
Critical Value of t: 2.119905
least Significant Difference: 4.671555
Treatments with the same letter are not significantly different.
bar.group(x = tratam$groups,
ylim=c(0,13),
main=" Comparación rendimiento papa tamaño Cero ",
xlab="Tratamiento ",
ylab="Rendimiento (ton/ha) ",
col="grey")
Modelo<-lm(total~Trat+plan)
ANOVA<-aov(Modelo)
summary(ANOVA)
Df Sum Sq Mean Sq F value Pr(>F)
Trat 4 102.4 25.60 1.203 0.348
plan 4 1191.2 297.81 13.995 4.31e-05 ***
Residuals 16 340.5 21.28
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
tratam<- LSD.test(y = ANOVA, trt = "Trat",group = T, console = T)
Study: ANOVA ~ "Trat"
LSD t Test for total
Mean Square Error: 21.28046
Trat, means and individual ( 95 %) CI
Alpha: 0.05 ; DF Error: 16
Critical Value of t: 2.119905
least Significant Difference: 6.184962
Treatments with the same letter are not significantly different.
bar.group(x = tratam$groups,
ylim=c(0,33),
main=" Comparación rendimiento papa total ",
xlab="Tratamiento ",
ylab="Rendimiento (ton/ha) ",
col="grey")
library(multcompView)
package 㤼㸱multcompView㤼㸲 was built under R version 4.0.5
library(daewr)
package 㤼㸱daewr㤼㸲 was built under R version 4.0.5Registered S3 method overwritten by 'DoE.base':
method from
factorize.factor conf.design
Modelo<-lm(Riche~Trat+plan)
ANOVA<-aov(Modelo)
summary(ANOVA)
Df Sum Sq Mean Sq F value Pr(>F)
Trat 4 12.13 3.032 3.541 0.0298 *
plan 4 13.67 3.417 3.990 0.0197 *
Residuals 16 13.70 0.856
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
TUKEY <- TukeyHSD(x=ANOVA, 'Trat', conf.level=0.95)
summary(TUKEY)
Length Class Mode
Trat 40 -none- numeric
tratam<- LSD.test(y = ANOVA, trt = "Trat",group = T, console = T)
Study: ANOVA ~ "Trat"
LSD t Test for Riche
Mean Square Error: 0.856418
Trat, means and individual ( 95 %) CI
Alpha: 0.05 ; DF Error: 16
Critical Value of t: 2.119905
least Significant Difference: 1.240764
Treatments with the same letter are not significantly different.
bar.group(x = tratam$groups,
ylim=c(0,6),
main=" Comparación rendimiento papa Riche por medio del método LSD",
xlab="Tratamiento ",
ylab="Rendimiento (ton/ha) ",
col="grey")
Modelo<-lm(Pareja~Trat+plan)
ANOVA<-aov(Modelo)
summary(ANOVA)
Df Sum Sq Mean Sq F value Pr(>F)
Trat 4 46.6 11.65 0.463 0.7619
plan 4 241.2 60.31 2.396 0.0935 .
Residuals 16 402.7 25.17
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
TUKEY <- TukeyHSD(x=ANOVA, 'Trat', conf.level=0.95)
summary(TUKEY)
Length Class Mode
Trat 40 -none- numeric
tratam<- LSD.test(y = ANOVA, trt = "Trat",group = T, console = T)
Study: ANOVA ~ "Trat"
LSD t Test for Pareja
Mean Square Error: 25.16957
Trat, means and individual ( 95 %) CI
Alpha: 0.05 ; DF Error: 16
Critical Value of t: 2.119905
least Significant Difference: 6.726426
Treatments with the same letter are not significantly different.
bar.group(x = tratam$groups,
ylim=c(0,20),
main=" Comparación rendimiento papa Pareja por medio del método LSD",
xlab="Tratamiento ",
ylab="Rendimiento (ton/ha) ",
col="grey")
Modelo<-lm(Cero~Trat+plan)
ANOVA<-aov(Modelo)
summary(ANOVA)
Df Sum Sq Mean Sq F value Pr(>F)
Trat 4 85.9 21.48 1.769 0.184
plan 4 605.8 151.45 12.475 8.52e-05 ***
Residuals 16 194.2 12.14
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
TUKEY <- TukeyHSD(x=ANOVA, 'Trat', conf.level=0.95)
summary(TUKEY)
Length Class Mode
Trat 40 -none- numeric
tratam<- LSD.test(y = ANOVA, trt = "Trat",group = T, console = T)
Study: ANOVA ~ "Trat"
LSD t Test for Cero
Mean Square Error: 12.14032
Trat, means and individual ( 95 %) CI
Alpha: 0.05 ; DF Error: 16
Critical Value of t: 2.119905
least Significant Difference: 4.671555
Treatments with the same letter are not significantly different.
bar.group(x = tratam$groups,
ylim=c(0,13),
main=" Comparación rendimiento papa Cero por medio del método LSD",
xlab="Tratamiento ",
ylab="Rendimiento (ton/ha) ",
col="grey")
Modelo<-lm(total~Trat+plan)
ANOVA<-aov(Modelo,data=Datos)
summary(ANOVA)
Df Sum Sq Mean Sq F value Pr(>F)
Trat 4 102.4 25.60 1.203 0.348
plan 4 1191.2 297.81 13.995 4.31e-05 ***
Residuals 16 340.5 21.28
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
TUKEY <- TukeyHSD(x=ANOVA, 'Trat', conf.level=0.95)
summary(TUKEY)
Length Class Mode
Trat 40 -none- numeric
tratam<- LSD.test(y = ANOVA, trt = "Trat",group = T, console = T)
Study: ANOVA ~ "Trat"
LSD t Test for total
Mean Square Error: 21.28046
Trat, means and individual ( 95 %) CI
Alpha: 0.05 ; DF Error: 16
Critical Value of t: 2.119905
least Significant Difference: 6.184962
Treatments with the same letter are not significantly different.
bar.group(x = tratam$groups,
ylim=c(0,34),
main=" Comparación rendimiento papa total por medio del método LSD",
xlab="Tratamiento ",
ylab="Rendimiento (ton/ha) ",
col="grey")
Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.
When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).
The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.