Load in data

theoph = read.csv("theoph.csv")
library(dplyr)                          ## Load in dplyr library for exercise
## Warning: package 'dplyr' was built under R version 4.0.5
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)                        ## Load in ggplot2 for exercise 
## Warning: package 'ggplot2' was built under R version 4.0.5
theoph$Subject = factor(theoph$Subject) ## Create subject variable for exercise

Task 1, create new data frame using select of subject ID, Time, and conc values:

theoph_select = select(theoph, Subject, Time, conc)
theoph_select
##     Subject  Time  conc
## 1         1  0.00  0.74
## 2         1  0.25  2.84
## 3         1  0.57  6.57
## 4         1  1.12 10.50
## 5         1  2.02  9.66
## 6         1  3.82  8.58
## 7         1  5.10  8.36
## 8         1  7.03  7.47
## 9         1  9.05  6.89
## 10        1 12.12  5.94
## 11        1 24.37  3.28
## 12        2  0.00  0.00
## 13        2  0.27  1.72
## 14        2  0.52  7.91
## 15        2  1.00  8.31
## 16        2  1.92  8.33
## 17        2  3.50  6.85
## 18        2  5.02  6.08
## 19        2  7.03  5.40
## 20        2  9.00  4.55
## 21        2 12.00  3.01
## 22        2 24.30  0.90
## 23        3  0.00  0.00
## 24        3  0.27  4.40
## 25        3  0.58  6.90
## 26        3  1.02  8.20
## 27        3  2.02  7.80
## 28        3  3.62  7.50
## 29        3  5.08  6.20
## 30        3  7.07  5.30
## 31        3  9.00  4.90
## 32        3 12.15  3.70
## 33        3 24.17  1.05
## 34        4  0.00  0.00
## 35        4  0.35  1.89
## 36        4  0.60  4.60
## 37        4  1.07  8.60
## 38        4  2.13  8.38
## 39        4  3.50  7.54
## 40        4  5.02  6.88
## 41        4  7.02  5.78
## 42        4  9.02  5.33
## 43        4 11.98  4.19
## 44        4 24.65  1.15
## 45        5  0.00  0.00
## 46        5  0.30  2.02
## 47        5  0.52  5.63
## 48        5  1.00 11.40
## 49        5  2.02  9.33
## 50        5  3.50  8.74
## 51        5  5.02  7.56
## 52        5  7.02  7.09
## 53        5  9.10  5.90
## 54        5 12.00  4.37
## 55        5 24.35  1.57
## 56        6  0.00  0.00
## 57        6  0.27  1.29
## 58        6  0.58  3.08
## 59        6  1.15  6.44
## 60        6  2.03  6.32
## 61        6  3.57  5.53
## 62        6  5.00  4.94
## 63        6  7.00  4.02
## 64        6  9.22  3.46
## 65        6 12.10  2.78
## 66        6 23.85  0.92
## 67        7  0.00  0.15
## 68        7  0.25  0.85
## 69        7  0.50  2.35
## 70        7  1.02  5.02
## 71        7  2.02  6.58
## 72        7  3.48  7.09
## 73        7  5.00  6.66
## 74        7  6.98  5.25
## 75        7  9.00  4.39
## 76        7 12.05  3.53
## 77        7 24.22  1.15
## 78        8  0.00  0.00
## 79        8  0.25  3.05
## 80        8  0.52  3.05
## 81        8  0.98  7.31
## 82        8  2.02  7.56
## 83        8  3.53  6.59
## 84        8  5.05  5.88
## 85        8  7.15  4.73
## 86        8  9.07  4.57
## 87        8 12.10  3.00
## 88        8 24.12  1.25
## 89        9  0.00  0.00
## 90        9  0.30  7.37
## 91        9  0.63  9.03
## 92        9  1.05  7.14
## 93        9  2.02  6.33
## 94        9  3.53  5.66
## 95        9  5.02  5.67
## 96        9  7.17  4.24
## 97        9  8.80  4.11
## 98        9 11.60  3.16
## 99        9 24.43  1.12
## 100      10  0.00  0.24
## 101      10  0.37  2.89
## 102      10  0.77  5.22
## 103      10  1.02  6.41
## 104      10  2.05  7.83
## 105      10  3.55 10.21
## 106      10  5.05  9.18
## 107      10  7.08  8.02
## 108      10  9.38  7.14
## 109      10 12.10  5.68
## 110      10 23.70  2.42
## 111      11  0.00  0.00
## 112      11  0.25  4.86
## 113      11  0.50  7.24
## 114      11  0.98  8.00
## 115      11  1.98  6.81
## 116      11  3.60  5.87
## 117      11  5.02  5.22
## 118      11  7.03  4.45
## 119      11  9.03  3.62
## 120      11 12.12  2.69
## 121      11 24.08  0.86
## 122      12  0.00  0.00
## 123      12  0.25  1.25
## 124      12  0.50  3.96
## 125      12  1.00  7.82
## 126      12  2.00  9.72
## 127      12  3.52  9.75
## 128      12  5.07  8.57
## 129      12  7.07  6.59
## 130      12  9.03  6.11
## 131      12 12.05  4.57
## 132      12 24.15  1.17

Task 2, create data frame using select() and distinct() of subject ID and their individual Weight and Dose:

sub_wt_dose = theoph %>%
              distinct(Subject, Wt, Dose)
sub_wt_dose
##    Subject   Wt Dose
## 1        1 79.6 4.02
## 2        2 72.4 4.40
## 3        3 70.5 4.53
## 4        4 72.7 4.40
## 5        5 54.6 5.86
## 6        6 80.0 4.00
## 7        7 64.6 4.95
## 8        8 70.5 4.53
## 9        9 86.4 3.10
## 10      10 58.2 5.50
## 11      11 65.0 4.92
## 12      12 60.5 5.30

Task 3, using filter() create a data frame of only the first subject:

sub1 = filter(theoph, Subject == 1)
sub1
##    Subject   Wt Dose  Time  conc
## 1        1 79.6 4.02  0.00  0.74
## 2        1 79.6 4.02  0.25  2.84
## 3        1 79.6 4.02  0.57  6.57
## 4        1 79.6 4.02  1.12 10.50
## 5        1 79.6 4.02  2.02  9.66
## 6        1 79.6 4.02  3.82  8.58
## 7        1 79.6 4.02  5.10  8.36
## 8        1 79.6 4.02  7.03  7.47
## 9        1 79.6 4.02  9.05  6.89
## 10       1 79.6 4.02 12.12  5.94
## 11       1 79.6 4.02 24.37  3.28

Task 4, using filter() create a data frame of subject 1 to 4:

sub_1_4 = filter(theoph, Subject == 1:4)
sub_1_4
##    Subject   Wt Dose  Time conc
## 1        1 79.6 4.02  0.00 0.74
## 2        1 79.6 4.02  2.02 9.66
## 3        1 79.6 4.02  9.05 6.89
## 4        2 72.4 4.40  0.52 7.91
## 5        2 72.4 4.40  5.02 6.08
## 6        2 72.4 4.40 24.30 0.90
## 7        3 70.5 4.53  0.00 0.00
## 8        3 70.5 4.53  2.02 7.80
## 9        3 70.5 4.53  9.00 4.90
## 10       4 72.7 4.40  0.60 4.60
## 11       4 72.7 4.40  5.02 6.88
## 12       4 72.7 4.40 24.65 1.15

Task 5, using groupby() calculate the average concentration per subject:

avgconc = theoph %>% 
            group_by(Subject) %>%
            summarise(avgConc = mean(conc))
avgconc
## # A tibble: 12 x 2
##    Subject avgConc
##    <fct>     <dbl>
##  1 1          6.44
##  2 2          4.82
##  3 3          5.09
##  4 4          4.94
##  5 5          5.78
##  6 6          3.53
##  7 7          3.91
##  8 8          4.27
##  9 9          4.89
## 10 10         5.93
## 11 11         4.51
## 12 12         5.41

Task 6, using filter() make a new data frame containing only the first subject and pipe this to ggplot() to make a line plot with Time on the x-axis and conc on the y-axis:

sub1_gg = theoph %>% 
            filter(Subject == 1) %>%
            ggplot(aes(x = Time, y = conc)) + geom_line() + ggtitle(" Subject 1 concentration over time")

sub1_gg

Task 6, Using select() to extract just the Subject, Time and conc variables and pipe this to ggplot() to make a line plot with Time on the x-axis, conc on the y-axis and the lines colored by subject:

subs_gg = theoph %>% 
            select(Subject, Time, conc) %>%
            ggplot(aes(x = Time, y = conc)) + geom_line(aes(color = Subject)) + 
            ggtitle(" Subject concentration over time")
subs_gg

Task 8, Using select() to extract just the Subject, Time and conc variables and pipe this to ggplot to make a line plot with Time on the x-axis, conc on the y-axis and faceted by the subject ID:

subs_gg_facet = theoph %>% 
                  select(Subject, Time, conc) %>%
                  ggplot(aes(x = Time, y = conc)) + facet_wrap(~ Subject) + geom_line(color = "red") + 
                  ggtitle(" Subject concentration over time")
subs_gg_facet