DATA PROCESSING
library("data.table")
library("ggplot2")
setwd("C:/Users/Pavitra/Desktop")
storm<-read.csv("repdata_data_StormData.csv.bz2")
colnames(storm)
## [1] "STATE__" "BGN_DATE" "BGN_TIME" "TIME_ZONE" "COUNTY"
## [6] "COUNTYNAME" "STATE" "EVTYPE" "BGN_RANGE" "BGN_AZI"
## [11] "BGN_LOCATI" "END_DATE" "END_TIME" "COUNTY_END" "COUNTYENDN"
## [16] "END_RANGE" "END_AZI" "END_LOCATI" "LENGTH" "WIDTH"
## [21] "F" "MAG" "FATALITIES" "INJURIES" "PROPDMG"
## [26] "PROPDMGEXP" "CROPDMG" "CROPDMGEXP" "WFO" "STATEOFFIC"
## [31] "ZONENAMES" "LATITUDE" "LONGITUDE" "LATITUDE_E" "LONGITUDE_"
## [36] "REMARKS" "REFNUM"
stormd<-as.data.table(storm)
RESULTS:
dfat<-aggregate(FATALITIES~EVTYPE,stormd,sum)
dfat<-dfat[order(dfat$FATALITIES,decreasing = T),]
g<-ggplot(dfat[1:10,],aes(x=reorder(EVTYPE, -FATALITIES), y=FATALITIES))+geom_bar(fill="lightblue",stat="identity")+labs(list(title="FATALITY DUE TO EVENTS IN US",x="Weather Evemt",y="Fatality"))
g
#### Events that have the Greatest Economic Consequences
dprop<-aggregate(PROPDMG~EVTYPE,stormd,sum)
dprop<-dprop[order(dprop$PROPDMG,decreasing = T),]
g<-ggplot(dprop[1:10,],aes(x=reorder(EVTYPE, -PROPDMG), y=PROPDMG))+geom_bar(fill="lightgreen",stat="identity")+labs(list(title="PROPperty DaMaGe DUE TO EVENTS IN US",x="Weather Evemt",y="property damage"))
g