#Criaçao da base de dados

#---------------------------------------
#Criaçao da base de dados


Funcionarios <- data.frame(nome = c("Marx", "Weber", "Durkheim","Arendt", "Maquiavel","platao"),
                           sexo = c("M", "M", "M", "F","M", "M"),
                           salario = c(1000, 1200, 1300, 2000, 500, 1400),            
                           stringsAsFactors = FALSE)
Funcionarios
##        nome sexo salario
## 1      Marx    M    1000
## 2     Weber    M    1200
## 3  Durkheim    M    1300
## 4    Arendt    F    2000
## 5 Maquiavel    M     500
## 6    platao    M    1400
mean(Funcionarios$salario)
## [1] 1233.333
#------------------------------------------------

#Carregar uma base de dados

#------------------------------------------------
#carregar uma base de dados
#---------------------------------------------

load("C:/Users/diova/Desktop/Base_de_dados-master/Titanic.RData")

#Importar do excel

#---------------------------------------------
#importar do excel
#-----------------------------------------------

library(readxl)
Familias <- read_excel("C:/Users/diova/Desktop/Base_de_dados-master/Familias.xls", 
                       col_types = c("numeric", "text", "text", 
                                     "text", "numeric", "numeric"))

head(Familias)
## # A tibble: 6 x 6
##   familia local       p.a.p   instr                tam renda
##     <dbl> <chr>       <chr>   <chr>              <dbl> <dbl>
## 1       1 Monte Verde Não usa Ensino médio           4  10.3
## 2       2 Monte Verde Não usa Ensino médio           4  15.4
## 3       3 Monte Verde Usa     Ensino fundamental     4   9.6
## 4       4 Monte Verde Não usa Ensino fundamental     5   5.5
## 5       5 Monte Verde Usa     Ensino médio           4   9  
## 6       6 Monte Verde Usa     Sem Instrução          1   2.4

#importar arquivo do CSV

#-------------------------------------------------
#Importar arquivo do CSV
#-------------------------------------------------

library(readr)
FifaData <- read_csv("C:/Users/diova/Desktop/Base_de_dados-master/FifaData.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   .default = col_double(),
##   Name = col_character(),
##   Nationality = col_character(),
##   National_Position = col_character(),
##   Club = col_character(),
##   Club_Position = col_character(),
##   Club_Joining = col_character(),
##   Height = col_character(),
##   Weight = col_character(),
##   Preffered_Foot = col_character(),
##   Birth_Date = col_character(),
##   Preffered_Position = col_character(),
##   Work_Rate = col_character()
## )
## i Use `spec()` for the full column specifications.

Quantos Brasileiros?

Qual a proporção de Alemães?

Qual a posição (país) mais comum?

tabela1 <-table(FifaData$Nationality)
tabela1
## 
##           Afghanistan               Albania               Algeria 
##                     2                    37                    50 
##                Angola     Antigua & Barbuda             Argentina 
##                    11                     4                  1097 
##               Armenia                 Aruba             Australia 
##                     8                     1                   234 
##               Austria            Azerbaijan              Barbados 
##                   266                     8                     1 
##               Belarus               Belgium                Belize 
##                    16                   265                     1 
##                 Benin               Bermuda               Bolivia 
##                    16                     6                    30 
##    Bosnia Herzegovina                Brazil              Bulgaria 
##                    52                   921                    35 
##          Burkina Faso              Cameroon                Canada 
##                    14                    96                    59 
##            Cape Verde  Central African Rep.                  Chad 
##                    22                     6                     1 
##                 Chile              China PR        Chinese Taipei 
##                   398                    30                     1 
##              Colombia               Comoros                 Congo 
##                   592                     9                    18 
##            Costa Rica               Croatia                  Cuba 
##                    30                   116                     2 
##               Curacao                Cyprus        Czech Republic 
##                    11                     6                    57 
##               Denmark    Dominican Republic              DR Congo 
##                   342                     2                    58 
##               Ecuador                 Egypt           El Salvador 
##                    34                    30                     2 
##               England     Equatorial Guinea               Eritrea 
##                  1618                     8                     1 
##               Estonia         Faroe Islands FIFA16_NationName_215 
##                     8                     6                     2 
##                  Fiji               Finland                France 
##                     1                    60                   974 
##         FYR Macedonia                 Gabon                Gambia 
##                    18                    15                    14 
##               Georgia               Germany                 Ghana 
##                    28                   689                   119 
##             Gibraltar                Greece               Grenada 
##                     1                    86                     1 
##                  Guam             Guatemala                Guinea 
##                     1                     2                    34 
##         Guinea Bissau                Guyana                 Haiti 
##                    17                     3                    12 
##              Honduras               Hungary               Iceland 
##                    16                    41                    47 
##                 India                  Iran                  Iraq 
##                    30                    11                     8 
##                Israel                 Italy           Ivory Coast 
##                    14                   751                    90 
##               Jamaica                 Japan            Kazakhstan 
##                    36                   471                     2 
##                 Kenya             Korea DPR        Korea Republic 
##                     6                     2                   321 
##                Kosovo                Kuwait                Latvia 
##                    31                     2                     8 
##               Lebanon               Lesotho               Liberia 
##                     2                     1                     4 
##                 Libya         Liechtenstein             Lithuania 
##                     4                     7                    15 
##            Luxembourg            Madagascar                  Mali 
##                     9                     2                    46 
##                 Malta            Mauritania             Mauritius 
##                     4                     5                     1 
##                Mexico               Moldova            Montenegro 
##                   341                     6                    23 
##            Montserrat               Morocco            Mozambique 
##                     3                    74                     5 
##               Namibia           Netherlands           New Zealand 
##                     1                   426                    30 
##                 Niger               Nigeria      Northern Ireland 
##                     2                   122                    83 
##                Norway                  Oman              Pakistan 
##                   342                     1                     1 
##             Palestine                Panama      Papua New Guinea 
##                     4                    11                     1 
##              Paraguay                  Peru           Philippines 
##                    75                    34                     2 
##                Poland              Portugal           Puerto Rico 
##                   328                   360                     2 
##                 Qatar   Republic of Ireland               Romania 
##                     2                   442                    61 
##                Russia            San Marino   São Tomé & Príncipe 
##                   309                     1                     1 
##          Saudi Arabia              Scotland               Senegal 
##                   354                   292                   119 
##                Serbia          Sierra Leone              Slovakia 
##                   136                     6                    61 
##              Slovenia               Somalia          South Africa 
##                    58                     1                    78 
##                 Spain        St Kitts Nevis              St Lucia 
##                  1008                     3                     1 
##              Suriname                Sweden           Switzerland 
##                     4                   378                   210 
##                 Syria              Tanzania           Timor-Leste 
##                     5                     2                     1 
##                  Togo     Trinidad & Tobago               Tunisia 
##                    10                     7                    35 
##                Turkey                Uganda               Ukraine 
##                   292                     7                    59 
##         United States               Uruguay            Uzbekistan 
##                   332                   153                     3 
##             Venezuela                 Wales                Zambia 
##                    42                   122                     4 
##              Zimbabwe 
##                    10
#trocando a notação científica 
options(scipen = 999)

#tabela de proporção
prop.table(tabela1)*100
## 
##           Afghanistan               Albania               Algeria 
##           0.011371390           0.210370707           0.284284740 
##                Angola     Antigua & Barbuda             Argentina 
##           0.062542643           0.022742779           6.237207187 
##               Armenia                 Aruba             Australia 
##           0.045485558           0.005685695           1.330452581 
##               Austria            Azerbaijan              Barbados 
##           1.512394815           0.045485558           0.005685695 
##               Belarus               Belgium                Belize 
##           0.090971117           1.506709120           0.005685695 
##                 Benin               Bermuda               Bolivia 
##           0.090971117           0.034114169           0.170570844 
##    Bosnia Herzegovina                Brazil              Bulgaria 
##           0.295656129           5.236524903           0.198999318 
##          Burkina Faso              Cameroon                Canada 
##           0.079599727           0.545826700           0.335455993 
##            Cape Verde  Central African Rep.                  Chad 
##           0.125085285           0.034114169           0.005685695 
##                 Chile              China PR        Chinese Taipei 
##           2.262906527           0.170570844           0.005685695 
##              Colombia               Comoros                 Congo 
##           3.365931317           0.051171253           0.102342506 
##            Costa Rica               Croatia                  Cuba 
##           0.170570844           0.659540596           0.011371390 
##               Curacao                Cyprus        Czech Republic 
##           0.062542643           0.034114169           0.324084603 
##               Denmark    Dominican Republic              DR Congo 
##           1.944507619           0.011371390           0.329770298 
##               Ecuador                 Egypt           El Salvador 
##           0.193313623           0.170570844           0.011371390 
##               England     Equatorial Guinea               Eritrea 
##           9.199454173           0.045485558           0.005685695 
##               Estonia         Faroe Islands FIFA16_NationName_215 
##           0.045485558           0.034114169           0.011371390 
##                  Fiji               Finland                France 
##           0.005685695           0.341141688           5.537866727 
##         FYR Macedonia                 Gabon                Gambia 
##           0.102342506           0.085285422           0.079599727 
##               Georgia               Germany                 Ghana 
##           0.159199454           3.917443712           0.676597680 
##             Gibraltar                Greece               Grenada 
##           0.005685695           0.488969752           0.005685695 
##                  Guam             Guatemala                Guinea 
##           0.005685695           0.011371390           0.193313623 
##         Guinea Bissau                Guyana                 Haiti 
##           0.096656811           0.017057084           0.068228338 
##              Honduras               Hungary               Iceland 
##           0.090971117           0.233113486           0.267227655 
##                 India                  Iran                  Iraq 
##           0.170570844           0.062542643           0.045485558 
##                Israel                 Italy           Ivory Coast 
##           0.079599727           4.269956789           0.511712531 
##               Jamaica                 Japan            Kazakhstan 
##           0.204685013           2.677962247           0.011371390 
##                 Kenya             Korea DPR        Korea Republic 
##           0.034114169           0.011371390           1.825108028 
##                Kosovo                Kuwait                Latvia 
##           0.176256539           0.011371390           0.045485558 
##               Lebanon               Lesotho               Liberia 
##           0.011371390           0.005685695           0.022742779 
##                 Libya         Liechtenstein             Lithuania 
##           0.022742779           0.039799864           0.085285422 
##            Luxembourg            Madagascar                  Mali 
##           0.051171253           0.011371390           0.261541960 
##                 Malta            Mauritania             Mauritius 
##           0.022742779           0.028428474           0.005685695 
##                Mexico               Moldova            Montenegro 
##           1.938821924           0.034114169           0.130770980 
##            Montserrat               Morocco            Mozambique 
##           0.017057084           0.420741415           0.028428474 
##               Namibia           Netherlands           New Zealand 
##           0.005685695           2.422105981           0.170570844 
##                 Niger               Nigeria      Northern Ireland 
##           0.011371390           0.693654765           0.471912668 
##                Norway                  Oman              Pakistan 
##           1.944507619           0.005685695           0.005685695 
##             Palestine                Panama      Papua New Guinea 
##           0.022742779           0.062542643           0.005685695 
##              Paraguay                  Peru           Philippines 
##           0.426427109           0.193313623           0.011371390 
##                Poland              Portugal           Puerto Rico 
##           1.864907892           2.046850125           0.011371390 
##                 Qatar   Republic of Ireland               Romania 
##           0.011371390           2.513077098           0.346827382 
##                Russia            San Marino   São Tomé & Príncipe 
##           1.756879691           0.005685695           0.005685695 
##          Saudi Arabia              Scotland               Senegal 
##           2.012735956           1.660222879           0.676597680 
##                Serbia          Sierra Leone              Slovakia 
##           0.773254492           0.034114169           0.346827382 
##              Slovenia               Somalia          South Africa 
##           0.329770298           0.005685695           0.443484194 
##                 Spain        St Kitts Nevis              St Lucia 
##           5.731180350           0.017057084           0.005685695 
##              Suriname                Sweden           Switzerland 
##           0.022742779           2.149192631           1.193995906 
##                 Syria              Tanzania           Timor-Leste 
##           0.028428474           0.011371390           0.005685695 
##                  Togo     Trinidad & Tobago               Tunisia 
##           0.056856948           0.039799864           0.198999318 
##                Turkey                Uganda               Ukraine 
##           1.660222879           0.039799864           0.335455993 
##         United States               Uruguay            Uzbekistan 
##           1.887650671           0.869911303           0.017057084 
##             Venezuela                 Wales                Zambia 
##           0.238799181           0.693654765           0.022742779 
##              Zimbabwe 
##           0.056856948
#arredondar
round(prop.table(tabela1)*100,2)
## 
##           Afghanistan               Albania               Algeria 
##                  0.01                  0.21                  0.28 
##                Angola     Antigua & Barbuda             Argentina 
##                  0.06                  0.02                  6.24 
##               Armenia                 Aruba             Australia 
##                  0.05                  0.01                  1.33 
##               Austria            Azerbaijan              Barbados 
##                  1.51                  0.05                  0.01 
##               Belarus               Belgium                Belize 
##                  0.09                  1.51                  0.01 
##                 Benin               Bermuda               Bolivia 
##                  0.09                  0.03                  0.17 
##    Bosnia Herzegovina                Brazil              Bulgaria 
##                  0.30                  5.24                  0.20 
##          Burkina Faso              Cameroon                Canada 
##                  0.08                  0.55                  0.34 
##            Cape Verde  Central African Rep.                  Chad 
##                  0.13                  0.03                  0.01 
##                 Chile              China PR        Chinese Taipei 
##                  2.26                  0.17                  0.01 
##              Colombia               Comoros                 Congo 
##                  3.37                  0.05                  0.10 
##            Costa Rica               Croatia                  Cuba 
##                  0.17                  0.66                  0.01 
##               Curacao                Cyprus        Czech Republic 
##                  0.06                  0.03                  0.32 
##               Denmark    Dominican Republic              DR Congo 
##                  1.94                  0.01                  0.33 
##               Ecuador                 Egypt           El Salvador 
##                  0.19                  0.17                  0.01 
##               England     Equatorial Guinea               Eritrea 
##                  9.20                  0.05                  0.01 
##               Estonia         Faroe Islands FIFA16_NationName_215 
##                  0.05                  0.03                  0.01 
##                  Fiji               Finland                France 
##                  0.01                  0.34                  5.54 
##         FYR Macedonia                 Gabon                Gambia 
##                  0.10                  0.09                  0.08 
##               Georgia               Germany                 Ghana 
##                  0.16                  3.92                  0.68 
##             Gibraltar                Greece               Grenada 
##                  0.01                  0.49                  0.01 
##                  Guam             Guatemala                Guinea 
##                  0.01                  0.01                  0.19 
##         Guinea Bissau                Guyana                 Haiti 
##                  0.10                  0.02                  0.07 
##              Honduras               Hungary               Iceland 
##                  0.09                  0.23                  0.27 
##                 India                  Iran                  Iraq 
##                  0.17                  0.06                  0.05 
##                Israel                 Italy           Ivory Coast 
##                  0.08                  4.27                  0.51 
##               Jamaica                 Japan            Kazakhstan 
##                  0.20                  2.68                  0.01 
##                 Kenya             Korea DPR        Korea Republic 
##                  0.03                  0.01                  1.83 
##                Kosovo                Kuwait                Latvia 
##                  0.18                  0.01                  0.05 
##               Lebanon               Lesotho               Liberia 
##                  0.01                  0.01                  0.02 
##                 Libya         Liechtenstein             Lithuania 
##                  0.02                  0.04                  0.09 
##            Luxembourg            Madagascar                  Mali 
##                  0.05                  0.01                  0.26 
##                 Malta            Mauritania             Mauritius 
##                  0.02                  0.03                  0.01 
##                Mexico               Moldova            Montenegro 
##                  1.94                  0.03                  0.13 
##            Montserrat               Morocco            Mozambique 
##                  0.02                  0.42                  0.03 
##               Namibia           Netherlands           New Zealand 
##                  0.01                  2.42                  0.17 
##                 Niger               Nigeria      Northern Ireland 
##                  0.01                  0.69                  0.47 
##                Norway                  Oman              Pakistan 
##                  1.94                  0.01                  0.01 
##             Palestine                Panama      Papua New Guinea 
##                  0.02                  0.06                  0.01 
##              Paraguay                  Peru           Philippines 
##                  0.43                  0.19                  0.01 
##                Poland              Portugal           Puerto Rico 
##                  1.86                  2.05                  0.01 
##                 Qatar   Republic of Ireland               Romania 
##                  0.01                  2.51                  0.35 
##                Russia            San Marino   São Tomé & Príncipe 
##                  1.76                  0.01                  0.01 
##          Saudi Arabia              Scotland               Senegal 
##                  2.01                  1.66                  0.68 
##                Serbia          Sierra Leone              Slovakia 
##                  0.77                  0.03                  0.35 
##              Slovenia               Somalia          South Africa 
##                  0.33                  0.01                  0.44 
##                 Spain        St Kitts Nevis              St Lucia 
##                  5.73                  0.02                  0.01 
##              Suriname                Sweden           Switzerland 
##                  0.02                  2.15                  1.19 
##                 Syria              Tanzania           Timor-Leste 
##                  0.03                  0.01                  0.01 
##                  Togo     Trinidad & Tobago               Tunisia 
##                  0.06                  0.04                  0.20 
##                Turkey                Uganda               Ukraine 
##                  1.66                  0.04                  0.34 
##         United States               Uruguay            Uzbekistan 
##                  1.89                  0.87                  0.02 
##             Venezuela                 Wales                Zambia 
##                  0.24                  0.69                  0.02 
##              Zimbabwe 
##                  0.06
tabela2 <- table(FifaData$National_Position)
tabela2
## 
## CAM  CB CDM  CM  GK LAM  LB LCB LCM LDM  LF  LM  LS  LW LWB RAM  RB RCB RCM RDM 
##  19   9   9   9  47   4  39  48  25  19   3  32  18   7   4   4  38  46  25  18 
##  RF  RM  RS  RW RWB  ST Sub 
##   3  34  18   7   4  30 556
round(prop.table(tabela2)*100,2)
## 
##   CAM    CB   CDM    CM    GK   LAM    LB   LCB   LCM   LDM    LF    LM    LS 
##  1.77  0.84  0.84  0.84  4.37  0.37  3.63  4.47  2.33  1.77  0.28  2.98  1.67 
##    LW   LWB   RAM    RB   RCB   RCM   RDM    RF    RM    RS    RW   RWB    ST 
##  0.65  0.37  0.37  3.53  4.28  2.33  1.67  0.28  3.16  1.67  0.65  0.37  2.79 
##   Sub 
## 51.72

um texto com as minhas respostas

Quantos usam P. A. P?

Proporção do ensino médio?

tabela3 <- table(Familias$p.a.p)
tabela3
## 
## Não usa     Usa 
##      42      78
tabela4 <- table(Familias$instr)
tabela4
## 
## Ensino fundamental       Ensino médio      Sem Instrução 
##                 38                 44                 38
round(prop.table(tabela4)*100,2)
## 
## Ensino fundamental       Ensino médio      Sem Instrução 
##              31.67              36.67              31.67

#Gráfico de pizza

#----------------------------------------------
#Gráfico de pizza
#---------------------------------------------------

#smples
pie(tabela3)

#simples + título
pie(tabela3,main = "Gráfico 1 - Uso de programa de alimentação popular")

#simples + título + cor
pie(tabela3,col= c("lightgreen", "pink"), main = "Gráfico 1 - Uso de programa alimentar popular")

#simples + título + cor
pie(tabela3,col= c("tomato3", "tomato4"), main = "Gráfico 2 - Uso de programa alimentar popular")

##simples + título + cor
pie(tabela2,col= c("#967dc9", "#c97dc1"), main = "Gráfico 3 - posição dos jogadores")

#Gráfico de barras

#----------------------------------
#Gráfico de barras
#---------------------------------------------

barplot(tabela4)

tabela4
## 
## Ensino fundamental       Ensino médio      Sem Instrução 
##                 38                 44                 38
#corrigir a ordem dos fatores
Familias$instr2 <- factor(Familias$instr,
                         levels = c("Sem Instrução",
                                    "Ensino fundamental",
                                    "Ensino médio"))
table(Familias$instr)
## 
## Ensino fundamental       Ensino médio      Sem Instrução 
##                 38                 44                 38
table(Familias$instr2)
## 
##      Sem Instrução Ensino fundamental       Ensino médio 
##                 38                 38                 44
tabela4 <- table(Familias$instr2)

barras <- barplot(tabela4, main = "Gráfico 2 - Escolaridade", 
        col = c("skyblue","royalblue","darkblue"),
        ylim = c(0,50))

#RÓTULO
text(barras, 0, tabela4,cex=1,pos=3,
     col = c("black", "white","white"))