hist(sample$gas_price)

summary(sample$gas_price)
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
    0.00    41.00    71.39   102.31   125.00 34912.03 
under_one = sample$gas_price >= 1
sample2 <- sample[under_one, ]
summary(sample2$gas_price)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
    1.0    41.0    71.5   102.3   125.0 34912.0 
third <- sample2$gas_price <= 125
third <- sample2[third,]
hist(third$gas_price)

fourth <- sample2$gas_price > 125
fourth <- sample2[fourth, ]
hist(fourth$gas_price)

fourth2 <- sample2$gas_price <= 241
fourth2 <- sample2[fourth2,]
hist(fourth2$gas_price)

fourth3 <- sample2$gas_price > 241
fourth3 <- sample2[fourth3, ]
summary(fourth3$gas_price)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  241.0   264.0   305.6   425.7   415.0 34912.0 
fourth4 <- sample2$gas_price <= 415
fourth4 <- sample2[fourth4,]
hist(fourth4$gas_price)

over <- sample2$gas_price > 415
under <- length(sample2$gas_price)
over <- sum(over)
over
[1] 3095
under
[1] 199941
over/under
[1] 0.01547957
(1 - sum(under_one)/length(sample$gas_price)) + (over/under)
[1] 0.01577457
over2 <- sample$gas_price <= 415
final_sample <-sample[over2, ]
under2 <- final_sample$gas_price >= 1
final_sample <- final_sample[under2,]
summary(final_sample$gas_price)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   1.00   40.00   70.00   91.14  121.00  415.00 
hist(final_sample$gas_price)

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KYGBge3J9DQpoaXN0KHNhbXBsZSRnYXNfcHJpY2UpDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5KHNhbXBsZSRnYXNfcHJpY2UpDQpgYGANCmBgYHtyfQ0KdW5kZXJfb25lID0gc2FtcGxlJGdhc19wcmljZSA+PSAxDQpzYW1wbGUyIDwtIHNhbXBsZVt1bmRlcl9vbmUsIF0NCmBgYA0KDQpgYGB7cn0NCnN1bW1hcnkoc2FtcGxlMiRnYXNfcHJpY2UpDQpgYGANCmBgYHtyfQ0KdGhpcmQgPC0gc2FtcGxlMiRnYXNfcHJpY2UgPD0gMTI1DQp0aGlyZCA8LSBzYW1wbGUyW3RoaXJkLF0NCmhpc3QodGhpcmQkZ2FzX3ByaWNlKQ0KYGBgDQoNCmBgYHtyfQ0KZm91cnRoIDwtIHNhbXBsZTIkZ2FzX3ByaWNlID4gMTI1DQpmb3VydGggPC0gc2FtcGxlMltmb3VydGgsIF0NCmhpc3QoZm91cnRoJGdhc19wcmljZSkNCmBgYA0KYGBge3J9DQpmb3VydGgyIDwtIHNhbXBsZTIkZ2FzX3ByaWNlIDw9IDI0MQ0KZm91cnRoMiA8LSBzYW1wbGUyW2ZvdXJ0aDIsXQ0KaGlzdChmb3VydGgyJGdhc19wcmljZSkNCmBgYA0KYGBge3J9DQpmb3VydGgzIDwtIHNhbXBsZTIkZ2FzX3ByaWNlID4gMjQxDQpmb3VydGgzIDwtIHNhbXBsZTJbZm91cnRoMywgXQ0Kc3VtbWFyeShmb3VydGgzJGdhc19wcmljZSkNCmBgYA0KYGBge3J9DQpmb3VydGg0IDwtIHNhbXBsZTIkZ2FzX3ByaWNlIDw9IDQxNQ0KZm91cnRoNCA8LSBzYW1wbGUyW2ZvdXJ0aDQsXQ0KaGlzdChmb3VydGg0JGdhc19wcmljZSkNCmBgYA0KYGBge3J9DQpvdmVyIDwtIHNhbXBsZTIkZ2FzX3ByaWNlID4gNDE1DQp1bmRlciA8LSBsZW5ndGgoc2FtcGxlMiRnYXNfcHJpY2UpDQpvdmVyIDwtIHN1bShvdmVyKQ0KYGBgDQoNCmBgYHtyfQ0Kb3Zlcg0KdW5kZXINCm92ZXIvdW5kZXINCmBgYA0KYGBge3J9DQooMSAtIHN1bSh1bmRlcl9vbmUpL2xlbmd0aChzYW1wbGUkZ2FzX3ByaWNlKSkgKyAob3Zlci91bmRlcikNCmBgYA0KYGBge3J9DQpvdmVyMiA8LSBzYW1wbGUkZ2FzX3ByaWNlIDw9IDQxNQ0KZmluYWxfc2FtcGxlIDwtc2FtcGxlW292ZXIyLCBdDQpgYGANCg0KYGBge3J9DQp1bmRlcjIgPC0gZmluYWxfc2FtcGxlJGdhc19wcmljZSA+PSAxDQpmaW5hbF9zYW1wbGUgPC0gZmluYWxfc2FtcGxlW3VuZGVyMixdDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5KGZpbmFsX3NhbXBsZSRnYXNfcHJpY2UpDQpgYGANCg0KYGBge3J9DQpoaXN0KGZpbmFsX3NhbXBsZSRnYXNfcHJpY2UpDQpgYGANCg0K