Criação do base de dados

# ----------------------------
#Criação da base de dados
# ----------------------------

Funcionarios <- data.frame(nome = c("Marx", "Weber", "Durkheim","Arendt", "Maquiavel", "Platão"),
                           sexo = c("M", "M", "M", "F","M","M"),
                           salario = c(1000, 1200, 1300, 2000, 500,1400),              
                           stringsAsFactors = FALSE)
Funcionarios
##        nome sexo salario
## 1      Marx    M    1000
## 2     Weber    M    1200
## 3  Durkheim    M    1300
## 4    Arendt    F    2000
## 5 Maquiavel    M     500
## 6    Platão    M    1400
mean (Funcionarios$salario)
## [1] 1233.333

Carregar base de dados

# ----------------------------
#Carregar uma base de dados do RData
# ----------------------------

load("C:/Users/Windows/Desktop/Base_de_dados-master/Titanic.RData")

Importar do Excel

# ----------------------------
#Importar do Excel
# ----------------------------

library(readxl)
Familias <- read_excel("C:/Users/Windows/Desktop/Base_de_dados-master/Familias.xls", 
                       col_types = c("numeric", "text", "text", 
                                     "text", "numeric", "numeric"))

Importar arquivo de CSV

# ----------------------------
#Importar arquivo do CSV
# ----------------------------

library(readr)
Fifa <- read_csv("C:/Users/Windows/Desktop/Base_de_dados-master/FifaData.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   .default = col_double(),
##   Name = col_character(),
##   Nationality = col_character(),
##   National_Position = col_character(),
##   Club = col_character(),
##   Club_Position = col_character(),
##   Club_Joining = col_character(),
##   Height = col_character(),
##   Weight = col_character(),
##   Preffered_Foot = col_character(),
##   Birth_Date = col_character(),
##   Preffered_Position = col_character(),
##   Work_Rate = col_character()
## )
## i Use `spec()` for the full column specifications.

Perguntas 01

# ---------------------------------
# Quantos brasileiros?
# Qual a proporção de Alemães?
# Qual a posição (país) mais comum?
# ---------------------------------

library(readr)
Fifa <- read_csv("C:/Users/Windows/Desktop/Base_de_dados-master/FifaData.csv")
## 
## -- Column specification --------------------------------------------------------
## cols(
##   .default = col_double(),
##   Name = col_character(),
##   Nationality = col_character(),
##   National_Position = col_character(),
##   Club = col_character(),
##   Club_Position = col_character(),
##   Club_Joining = col_character(),
##   Height = col_character(),
##   Weight = col_character(),
##   Preffered_Foot = col_character(),
##   Birth_Date = col_character(),
##   Preffered_Position = col_character(),
##   Work_Rate = col_character()
## )
## i Use `spec()` for the full column specifications.

Respostas

tabela1 <- table(Fifa$Nationality)
tabela1
## 
##           Afghanistan               Albania               Algeria 
##                     2                    37                    50 
##                Angola     Antigua & Barbuda             Argentina 
##                    11                     4                  1097 
##               Armenia                 Aruba             Australia 
##                     8                     1                   234 
##               Austria            Azerbaijan              Barbados 
##                   266                     8                     1 
##               Belarus               Belgium                Belize 
##                    16                   265                     1 
##                 Benin               Bermuda               Bolivia 
##                    16                     6                    30 
##    Bosnia Herzegovina                Brazil              Bulgaria 
##                    52                   921                    35 
##          Burkina Faso              Cameroon                Canada 
##                    14                    96                    59 
##            Cape Verde  Central African Rep.                  Chad 
##                    22                     6                     1 
##                 Chile              China PR        Chinese Taipei 
##                   398                    30                     1 
##              Colombia               Comoros                 Congo 
##                   592                     9                    18 
##            Costa Rica               Croatia                  Cuba 
##                    30                   116                     2 
##               Curacao                Cyprus        Czech Republic 
##                    11                     6                    57 
##               Denmark    Dominican Republic              DR Congo 
##                   342                     2                    58 
##               Ecuador                 Egypt           El Salvador 
##                    34                    30                     2 
##               England     Equatorial Guinea               Eritrea 
##                  1618                     8                     1 
##               Estonia         Faroe Islands FIFA16_NationName_215 
##                     8                     6                     2 
##                  Fiji               Finland                France 
##                     1                    60                   974 
##         FYR Macedonia                 Gabon                Gambia 
##                    18                    15                    14 
##               Georgia               Germany                 Ghana 
##                    28                   689                   119 
##             Gibraltar                Greece               Grenada 
##                     1                    86                     1 
##                  Guam             Guatemala                Guinea 
##                     1                     2                    34 
##         Guinea Bissau                Guyana                 Haiti 
##                    17                     3                    12 
##              Honduras               Hungary               Iceland 
##                    16                    41                    47 
##                 India                  Iran                  Iraq 
##                    30                    11                     8 
##                Israel                 Italy           Ivory Coast 
##                    14                   751                    90 
##               Jamaica                 Japan            Kazakhstan 
##                    36                   471                     2 
##                 Kenya             Korea DPR        Korea Republic 
##                     6                     2                   321 
##                Kosovo                Kuwait                Latvia 
##                    31                     2                     8 
##               Lebanon               Lesotho               Liberia 
##                     2                     1                     4 
##                 Libya         Liechtenstein             Lithuania 
##                     4                     7                    15 
##            Luxembourg            Madagascar                  Mali 
##                     9                     2                    46 
##                 Malta            Mauritania             Mauritius 
##                     4                     5                     1 
##                Mexico               Moldova            Montenegro 
##                   341                     6                    23 
##            Montserrat               Morocco            Mozambique 
##                     3                    74                     5 
##               Namibia           Netherlands           New Zealand 
##                     1                   426                    30 
##                 Niger               Nigeria      Northern Ireland 
##                     2                   122                    83 
##                Norway                  Oman              Pakistan 
##                   342                     1                     1 
##             Palestine                Panama      Papua New Guinea 
##                     4                    11                     1 
##              Paraguay                  Peru           Philippines 
##                    75                    34                     2 
##                Poland              Portugal           Puerto Rico 
##                   328                   360                     2 
##                 Qatar   Republic of Ireland               Romania 
##                     2                   442                    61 
##                Russia            San Marino   São Tomé & Príncipe 
##                   309                     1                     1 
##          Saudi Arabia              Scotland               Senegal 
##                   354                   292                   119 
##                Serbia          Sierra Leone              Slovakia 
##                   136                     6                    61 
##              Slovenia               Somalia          South Africa 
##                    58                     1                    78 
##                 Spain        St Kitts Nevis              St Lucia 
##                  1008                     3                     1 
##              Suriname                Sweden           Switzerland 
##                     4                   378                   210 
##                 Syria              Tanzania           Timor-Leste 
##                     5                     2                     1 
##                  Togo     Trinidad & Tobago               Tunisia 
##                    10                     7                    35 
##                Turkey                Uganda               Ukraine 
##                   292                     7                    59 
##         United States               Uruguay            Uzbekistan 
##                   332                   153                     3 
##             Venezuela                 Wales                Zambia 
##                    42                   122                     4 
##              Zimbabwe 
##                    10
# trocando a notação científica 
options (scipen = 999)

# tabela de proporção
prop.table(tabela1)*100
## 
##           Afghanistan               Albania               Algeria 
##           0.011371390           0.210370707           0.284284740 
##                Angola     Antigua & Barbuda             Argentina 
##           0.062542643           0.022742779           6.237207187 
##               Armenia                 Aruba             Australia 
##           0.045485558           0.005685695           1.330452581 
##               Austria            Azerbaijan              Barbados 
##           1.512394815           0.045485558           0.005685695 
##               Belarus               Belgium                Belize 
##           0.090971117           1.506709120           0.005685695 
##                 Benin               Bermuda               Bolivia 
##           0.090971117           0.034114169           0.170570844 
##    Bosnia Herzegovina                Brazil              Bulgaria 
##           0.295656129           5.236524903           0.198999318 
##          Burkina Faso              Cameroon                Canada 
##           0.079599727           0.545826700           0.335455993 
##            Cape Verde  Central African Rep.                  Chad 
##           0.125085285           0.034114169           0.005685695 
##                 Chile              China PR        Chinese Taipei 
##           2.262906527           0.170570844           0.005685695 
##              Colombia               Comoros                 Congo 
##           3.365931317           0.051171253           0.102342506 
##            Costa Rica               Croatia                  Cuba 
##           0.170570844           0.659540596           0.011371390 
##               Curacao                Cyprus        Czech Republic 
##           0.062542643           0.034114169           0.324084603 
##               Denmark    Dominican Republic              DR Congo 
##           1.944507619           0.011371390           0.329770298 
##               Ecuador                 Egypt           El Salvador 
##           0.193313623           0.170570844           0.011371390 
##               England     Equatorial Guinea               Eritrea 
##           9.199454173           0.045485558           0.005685695 
##               Estonia         Faroe Islands FIFA16_NationName_215 
##           0.045485558           0.034114169           0.011371390 
##                  Fiji               Finland                France 
##           0.005685695           0.341141688           5.537866727 
##         FYR Macedonia                 Gabon                Gambia 
##           0.102342506           0.085285422           0.079599727 
##               Georgia               Germany                 Ghana 
##           0.159199454           3.917443712           0.676597680 
##             Gibraltar                Greece               Grenada 
##           0.005685695           0.488969752           0.005685695 
##                  Guam             Guatemala                Guinea 
##           0.005685695           0.011371390           0.193313623 
##         Guinea Bissau                Guyana                 Haiti 
##           0.096656811           0.017057084           0.068228338 
##              Honduras               Hungary               Iceland 
##           0.090971117           0.233113486           0.267227655 
##                 India                  Iran                  Iraq 
##           0.170570844           0.062542643           0.045485558 
##                Israel                 Italy           Ivory Coast 
##           0.079599727           4.269956789           0.511712531 
##               Jamaica                 Japan            Kazakhstan 
##           0.204685013           2.677962247           0.011371390 
##                 Kenya             Korea DPR        Korea Republic 
##           0.034114169           0.011371390           1.825108028 
##                Kosovo                Kuwait                Latvia 
##           0.176256539           0.011371390           0.045485558 
##               Lebanon               Lesotho               Liberia 
##           0.011371390           0.005685695           0.022742779 
##                 Libya         Liechtenstein             Lithuania 
##           0.022742779           0.039799864           0.085285422 
##            Luxembourg            Madagascar                  Mali 
##           0.051171253           0.011371390           0.261541960 
##                 Malta            Mauritania             Mauritius 
##           0.022742779           0.028428474           0.005685695 
##                Mexico               Moldova            Montenegro 
##           1.938821924           0.034114169           0.130770980 
##            Montserrat               Morocco            Mozambique 
##           0.017057084           0.420741415           0.028428474 
##               Namibia           Netherlands           New Zealand 
##           0.005685695           2.422105981           0.170570844 
##                 Niger               Nigeria      Northern Ireland 
##           0.011371390           0.693654765           0.471912668 
##                Norway                  Oman              Pakistan 
##           1.944507619           0.005685695           0.005685695 
##             Palestine                Panama      Papua New Guinea 
##           0.022742779           0.062542643           0.005685695 
##              Paraguay                  Peru           Philippines 
##           0.426427109           0.193313623           0.011371390 
##                Poland              Portugal           Puerto Rico 
##           1.864907892           2.046850125           0.011371390 
##                 Qatar   Republic of Ireland               Romania 
##           0.011371390           2.513077098           0.346827382 
##                Russia            San Marino   São Tomé & Príncipe 
##           1.756879691           0.005685695           0.005685695 
##          Saudi Arabia              Scotland               Senegal 
##           2.012735956           1.660222879           0.676597680 
##                Serbia          Sierra Leone              Slovakia 
##           0.773254492           0.034114169           0.346827382 
##              Slovenia               Somalia          South Africa 
##           0.329770298           0.005685695           0.443484194 
##                 Spain        St Kitts Nevis              St Lucia 
##           5.731180350           0.017057084           0.005685695 
##              Suriname                Sweden           Switzerland 
##           0.022742779           2.149192631           1.193995906 
##                 Syria              Tanzania           Timor-Leste 
##           0.028428474           0.011371390           0.005685695 
##                  Togo     Trinidad & Tobago               Tunisia 
##           0.056856948           0.039799864           0.198999318 
##                Turkey                Uganda               Ukraine 
##           1.660222879           0.039799864           0.335455993 
##         United States               Uruguay            Uzbekistan 
##           1.887650671           0.869911303           0.017057084 
##             Venezuela                 Wales                Zambia 
##           0.238799181           0.693654765           0.022742779 
##              Zimbabwe 
##           0.056856948
# arredondar
round(prop.table(tabela1)*100,2)
## 
##           Afghanistan               Albania               Algeria 
##                  0.01                  0.21                  0.28 
##                Angola     Antigua & Barbuda             Argentina 
##                  0.06                  0.02                  6.24 
##               Armenia                 Aruba             Australia 
##                  0.05                  0.01                  1.33 
##               Austria            Azerbaijan              Barbados 
##                  1.51                  0.05                  0.01 
##               Belarus               Belgium                Belize 
##                  0.09                  1.51                  0.01 
##                 Benin               Bermuda               Bolivia 
##                  0.09                  0.03                  0.17 
##    Bosnia Herzegovina                Brazil              Bulgaria 
##                  0.30                  5.24                  0.20 
##          Burkina Faso              Cameroon                Canada 
##                  0.08                  0.55                  0.34 
##            Cape Verde  Central African Rep.                  Chad 
##                  0.13                  0.03                  0.01 
##                 Chile              China PR        Chinese Taipei 
##                  2.26                  0.17                  0.01 
##              Colombia               Comoros                 Congo 
##                  3.37                  0.05                  0.10 
##            Costa Rica               Croatia                  Cuba 
##                  0.17                  0.66                  0.01 
##               Curacao                Cyprus        Czech Republic 
##                  0.06                  0.03                  0.32 
##               Denmark    Dominican Republic              DR Congo 
##                  1.94                  0.01                  0.33 
##               Ecuador                 Egypt           El Salvador 
##                  0.19                  0.17                  0.01 
##               England     Equatorial Guinea               Eritrea 
##                  9.20                  0.05                  0.01 
##               Estonia         Faroe Islands FIFA16_NationName_215 
##                  0.05                  0.03                  0.01 
##                  Fiji               Finland                France 
##                  0.01                  0.34                  5.54 
##         FYR Macedonia                 Gabon                Gambia 
##                  0.10                  0.09                  0.08 
##               Georgia               Germany                 Ghana 
##                  0.16                  3.92                  0.68 
##             Gibraltar                Greece               Grenada 
##                  0.01                  0.49                  0.01 
##                  Guam             Guatemala                Guinea 
##                  0.01                  0.01                  0.19 
##         Guinea Bissau                Guyana                 Haiti 
##                  0.10                  0.02                  0.07 
##              Honduras               Hungary               Iceland 
##                  0.09                  0.23                  0.27 
##                 India                  Iran                  Iraq 
##                  0.17                  0.06                  0.05 
##                Israel                 Italy           Ivory Coast 
##                  0.08                  4.27                  0.51 
##               Jamaica                 Japan            Kazakhstan 
##                  0.20                  2.68                  0.01 
##                 Kenya             Korea DPR        Korea Republic 
##                  0.03                  0.01                  1.83 
##                Kosovo                Kuwait                Latvia 
##                  0.18                  0.01                  0.05 
##               Lebanon               Lesotho               Liberia 
##                  0.01                  0.01                  0.02 
##                 Libya         Liechtenstein             Lithuania 
##                  0.02                  0.04                  0.09 
##            Luxembourg            Madagascar                  Mali 
##                  0.05                  0.01                  0.26 
##                 Malta            Mauritania             Mauritius 
##                  0.02                  0.03                  0.01 
##                Mexico               Moldova            Montenegro 
##                  1.94                  0.03                  0.13 
##            Montserrat               Morocco            Mozambique 
##                  0.02                  0.42                  0.03 
##               Namibia           Netherlands           New Zealand 
##                  0.01                  2.42                  0.17 
##                 Niger               Nigeria      Northern Ireland 
##                  0.01                  0.69                  0.47 
##                Norway                  Oman              Pakistan 
##                  1.94                  0.01                  0.01 
##             Palestine                Panama      Papua New Guinea 
##                  0.02                  0.06                  0.01 
##              Paraguay                  Peru           Philippines 
##                  0.43                  0.19                  0.01 
##                Poland              Portugal           Puerto Rico 
##                  1.86                  2.05                  0.01 
##                 Qatar   Republic of Ireland               Romania 
##                  0.01                  2.51                  0.35 
##                Russia            San Marino   São Tomé & Príncipe 
##                  1.76                  0.01                  0.01 
##          Saudi Arabia              Scotland               Senegal 
##                  2.01                  1.66                  0.68 
##                Serbia          Sierra Leone              Slovakia 
##                  0.77                  0.03                  0.35 
##              Slovenia               Somalia          South Africa 
##                  0.33                  0.01                  0.44 
##                 Spain        St Kitts Nevis              St Lucia 
##                  5.73                  0.02                  0.01 
##              Suriname                Sweden           Switzerland 
##                  0.02                  2.15                  1.19 
##                 Syria              Tanzania           Timor-Leste 
##                  0.03                  0.01                  0.01 
##                  Togo     Trinidad & Tobago               Tunisia 
##                  0.06                  0.04                  0.20 
##                Turkey                Uganda               Ukraine 
##                  1.66                  0.04                  0.34 
##         United States               Uruguay            Uzbekistan 
##                  1.89                  0.87                  0.02 
##             Venezuela                 Wales                Zambia 
##                  0.24                  0.69                  0.02 
##              Zimbabwe 
##                  0.06
tabela2 <- table(Fifa$National_Position)
tabela2
## 
## CAM  CB CDM  CM  GK LAM  LB LCB LCM LDM  LF  LM  LS  LW LWB RAM  RB RCB RCM RDM 
##  19   9   9   9  47   4  39  48  25  19   3  32  18   7   4   4  38  46  25  18 
##  RF  RM  RS  RW RWB  ST Sub 
##   3  34  18   7   4  30 556
round(prop.table(tabela2)*100,2)
## 
##   CAM    CB   CDM    CM    GK   LAM    LB   LCB   LCM   LDM    LF    LM    LS 
##  1.77  0.84  0.84  0.84  4.37  0.37  3.63  4.47  2.33  1.77  0.28  2.98  1.67 
##    LW   LWB   RAM    RB   RCB   RCM   RDM    RF    RM    RS    RW   RWB    ST 
##  0.65  0.37  0.37  3.53  4.28  2.33  1.67  0.28  3.16  1.67  0.65  0.37  2.79 
##   Sub 
## 51.72

Perguntas 01

#---------------------------------
# Quantos usam o P.A.P?
# Proporção de Ensino médio?
#---------------------------------


tabela3 <- table(Familias$p.a.p)
tabela3
## 
## Não usa     Usa 
##      42      78
round(prop.table(tabela3)*100,2)
## 
## Não usa     Usa 
##      35      65
tabela4 <- table(Familias$instr)
tabela4
## 
## Ensino fundamental       Ensino médio      Sem Instrução 
##                 38                 44                 38
round(prop.table(tabela4)*100,2)
## 
## Ensino fundamental       Ensino médio      Sem Instrução 
##              31.67              36.67              31.67

Todas as pizzas

#---------------------------------
# Gráfico de pizza
#---------------------------------

#simples
pie(tabela3)

#simples + título
pie(tabela3,main="Gráfico 1 - Uso do programa de alimentação popular")

#simples + título + cor
pie(tabela3,col = c("coral2", "turquoise4"), main="Gráfico 1 - Uso do programa de alimentação popular")

#definir a quantidade de cores
colors()
##   [1] "white"                "aliceblue"            "antiquewhite"        
##   [4] "antiquewhite1"        "antiquewhite2"        "antiquewhite3"       
##   [7] "antiquewhite4"        "aquamarine"           "aquamarine1"         
##  [10] "aquamarine2"          "aquamarine3"          "aquamarine4"         
##  [13] "azure"                "azure1"               "azure2"              
##  [16] "azure3"               "azure4"               "beige"               
##  [19] "bisque"               "bisque1"              "bisque2"             
##  [22] "bisque3"              "bisque4"              "black"               
##  [25] "blanchedalmond"       "blue"                 "blue1"               
##  [28] "blue2"                "blue3"                "blue4"               
##  [31] "blueviolet"           "brown"                "brown1"              
##  [34] "brown2"               "brown3"               "brown4"              
##  [37] "burlywood"            "burlywood1"           "burlywood2"          
##  [40] "burlywood3"           "burlywood4"           "cadetblue"           
##  [43] "cadetblue1"           "cadetblue2"           "cadetblue3"          
##  [46] "cadetblue4"           "chartreuse"           "chartreuse1"         
##  [49] "chartreuse2"          "chartreuse3"          "chartreuse4"         
##  [52] "chocolate"            "chocolate1"           "chocolate2"          
##  [55] "chocolate3"           "chocolate4"           "coral"               
##  [58] "coral1"               "coral2"               "coral3"              
##  [61] "coral4"               "cornflowerblue"       "cornsilk"            
##  [64] "cornsilk1"            "cornsilk2"            "cornsilk3"           
##  [67] "cornsilk4"            "cyan"                 "cyan1"               
##  [70] "cyan2"                "cyan3"                "cyan4"               
##  [73] "darkblue"             "darkcyan"             "darkgoldenrod"       
##  [76] "darkgoldenrod1"       "darkgoldenrod2"       "darkgoldenrod3"      
##  [79] "darkgoldenrod4"       "darkgray"             "darkgreen"           
##  [82] "darkgrey"             "darkkhaki"            "darkmagenta"         
##  [85] "darkolivegreen"       "darkolivegreen1"      "darkolivegreen2"     
##  [88] "darkolivegreen3"      "darkolivegreen4"      "darkorange"          
##  [91] "darkorange1"          "darkorange2"          "darkorange3"         
##  [94] "darkorange4"          "darkorchid"           "darkorchid1"         
##  [97] "darkorchid2"          "darkorchid3"          "darkorchid4"         
## [100] "darkred"              "darksalmon"           "darkseagreen"        
## [103] "darkseagreen1"        "darkseagreen2"        "darkseagreen3"       
## [106] "darkseagreen4"        "darkslateblue"        "darkslategray"       
## [109] "darkslategray1"       "darkslategray2"       "darkslategray3"      
## [112] "darkslategray4"       "darkslategrey"        "darkturquoise"       
## [115] "darkviolet"           "deeppink"             "deeppink1"           
## [118] "deeppink2"            "deeppink3"            "deeppink4"           
## [121] "deepskyblue"          "deepskyblue1"         "deepskyblue2"        
## [124] "deepskyblue3"         "deepskyblue4"         "dimgray"             
## [127] "dimgrey"              "dodgerblue"           "dodgerblue1"         
## [130] "dodgerblue2"          "dodgerblue3"          "dodgerblue4"         
## [133] "firebrick"            "firebrick1"           "firebrick2"          
## [136] "firebrick3"           "firebrick4"           "floralwhite"         
## [139] "forestgreen"          "gainsboro"            "ghostwhite"          
## [142] "gold"                 "gold1"                "gold2"               
## [145] "gold3"                "gold4"                "goldenrod"           
## [148] "goldenrod1"           "goldenrod2"           "goldenrod3"          
## [151] "goldenrod4"           "gray"                 "gray0"               
## [154] "gray1"                "gray2"                "gray3"               
## [157] "gray4"                "gray5"                "gray6"               
## [160] "gray7"                "gray8"                "gray9"               
## [163] "gray10"               "gray11"               "gray12"              
## [166] "gray13"               "gray14"               "gray15"              
## [169] "gray16"               "gray17"               "gray18"              
## [172] "gray19"               "gray20"               "gray21"              
## [175] "gray22"               "gray23"               "gray24"              
## [178] "gray25"               "gray26"               "gray27"              
## [181] "gray28"               "gray29"               "gray30"              
## [184] "gray31"               "gray32"               "gray33"              
## [187] "gray34"               "gray35"               "gray36"              
## [190] "gray37"               "gray38"               "gray39"              
## [193] "gray40"               "gray41"               "gray42"              
## [196] "gray43"               "gray44"               "gray45"              
## [199] "gray46"               "gray47"               "gray48"              
## [202] "gray49"               "gray50"               "gray51"              
## [205] "gray52"               "gray53"               "gray54"              
## [208] "gray55"               "gray56"               "gray57"              
## [211] "gray58"               "gray59"               "gray60"              
## [214] "gray61"               "gray62"               "gray63"              
## [217] "gray64"               "gray65"               "gray66"              
## [220] "gray67"               "gray68"               "gray69"              
## [223] "gray70"               "gray71"               "gray72"              
## [226] "gray73"               "gray74"               "gray75"              
## [229] "gray76"               "gray77"               "gray78"              
## [232] "gray79"               "gray80"               "gray81"              
## [235] "gray82"               "gray83"               "gray84"              
## [238] "gray85"               "gray86"               "gray87"              
## [241] "gray88"               "gray89"               "gray90"              
## [244] "gray91"               "gray92"               "gray93"              
## [247] "gray94"               "gray95"               "gray96"              
## [250] "gray97"               "gray98"               "gray99"              
## [253] "gray100"              "green"                "green1"              
## [256] "green2"               "green3"               "green4"              
## [259] "greenyellow"          "grey"                 "grey0"               
## [262] "grey1"                "grey2"                "grey3"               
## [265] "grey4"                "grey5"                "grey6"               
## [268] "grey7"                "grey8"                "grey9"               
## [271] "grey10"               "grey11"               "grey12"              
## [274] "grey13"               "grey14"               "grey15"              
## [277] "grey16"               "grey17"               "grey18"              
## [280] "grey19"               "grey20"               "grey21"              
## [283] "grey22"               "grey23"               "grey24"              
## [286] "grey25"               "grey26"               "grey27"              
## [289] "grey28"               "grey29"               "grey30"              
## [292] "grey31"               "grey32"               "grey33"              
## [295] "grey34"               "grey35"               "grey36"              
## [298] "grey37"               "grey38"               "grey39"              
## [301] "grey40"               "grey41"               "grey42"              
## [304] "grey43"               "grey44"               "grey45"              
## [307] "grey46"               "grey47"               "grey48"              
## [310] "grey49"               "grey50"               "grey51"              
## [313] "grey52"               "grey53"               "grey54"              
## [316] "grey55"               "grey56"               "grey57"              
## [319] "grey58"               "grey59"               "grey60"              
## [322] "grey61"               "grey62"               "grey63"              
## [325] "grey64"               "grey65"               "grey66"              
## [328] "grey67"               "grey68"               "grey69"              
## [331] "grey70"               "grey71"               "grey72"              
## [334] "grey73"               "grey74"               "grey75"              
## [337] "grey76"               "grey77"               "grey78"              
## [340] "grey79"               "grey80"               "grey81"              
## [343] "grey82"               "grey83"               "grey84"              
## [346] "grey85"               "grey86"               "grey87"              
## [349] "grey88"               "grey89"               "grey90"              
## [352] "grey91"               "grey92"               "grey93"              
## [355] "grey94"               "grey95"               "grey96"              
## [358] "grey97"               "grey98"               "grey99"              
## [361] "grey100"              "honeydew"             "honeydew1"           
## [364] "honeydew2"            "honeydew3"            "honeydew4"           
## [367] "hotpink"              "hotpink1"             "hotpink2"            
## [370] "hotpink3"             "hotpink4"             "indianred"           
## [373] "indianred1"           "indianred2"           "indianred3"          
## [376] "indianred4"           "ivory"                "ivory1"              
## [379] "ivory2"               "ivory3"               "ivory4"              
## [382] "khaki"                "khaki1"               "khaki2"              
## [385] "khaki3"               "khaki4"               "lavender"            
## [388] "lavenderblush"        "lavenderblush1"       "lavenderblush2"      
## [391] "lavenderblush3"       "lavenderblush4"       "lawngreen"           
## [394] "lemonchiffon"         "lemonchiffon1"        "lemonchiffon2"       
## [397] "lemonchiffon3"        "lemonchiffon4"        "lightblue"           
## [400] "lightblue1"           "lightblue2"           "lightblue3"          
## [403] "lightblue4"           "lightcoral"           "lightcyan"           
## [406] "lightcyan1"           "lightcyan2"           "lightcyan3"          
## [409] "lightcyan4"           "lightgoldenrod"       "lightgoldenrod1"     
## [412] "lightgoldenrod2"      "lightgoldenrod3"      "lightgoldenrod4"     
## [415] "lightgoldenrodyellow" "lightgray"            "lightgreen"          
## [418] "lightgrey"            "lightpink"            "lightpink1"          
## [421] "lightpink2"           "lightpink3"           "lightpink4"          
## [424] "lightsalmon"          "lightsalmon1"         "lightsalmon2"        
## [427] "lightsalmon3"         "lightsalmon4"         "lightseagreen"       
## [430] "lightskyblue"         "lightskyblue1"        "lightskyblue2"       
## [433] "lightskyblue3"        "lightskyblue4"        "lightslateblue"      
## [436] "lightslategray"       "lightslategrey"       "lightsteelblue"      
## [439] "lightsteelblue1"      "lightsteelblue2"      "lightsteelblue3"     
## [442] "lightsteelblue4"      "lightyellow"          "lightyellow1"        
## [445] "lightyellow2"         "lightyellow3"         "lightyellow4"        
## [448] "limegreen"            "linen"                "magenta"             
## [451] "magenta1"             "magenta2"             "magenta3"            
## [454] "magenta4"             "maroon"               "maroon1"             
## [457] "maroon2"              "maroon3"              "maroon4"             
## [460] "mediumaquamarine"     "mediumblue"           "mediumorchid"        
## [463] "mediumorchid1"        "mediumorchid2"        "mediumorchid3"       
## [466] "mediumorchid4"        "mediumpurple"         "mediumpurple1"       
## [469] "mediumpurple2"        "mediumpurple3"        "mediumpurple4"       
## [472] "mediumseagreen"       "mediumslateblue"      "mediumspringgreen"   
## [475] "mediumturquoise"      "mediumvioletred"      "midnightblue"        
## [478] "mintcream"            "mistyrose"            "mistyrose1"          
## [481] "mistyrose2"           "mistyrose3"           "mistyrose4"          
## [484] "moccasin"             "navajowhite"          "navajowhite1"        
## [487] "navajowhite2"         "navajowhite3"         "navajowhite4"        
## [490] "navy"                 "navyblue"             "oldlace"             
## [493] "olivedrab"            "olivedrab1"           "olivedrab2"          
## [496] "olivedrab3"           "olivedrab4"           "orange"              
## [499] "orange1"              "orange2"              "orange3"             
## [502] "orange4"              "orangered"            "orangered1"          
## [505] "orangered2"           "orangered3"           "orangered4"          
## [508] "orchid"               "orchid1"              "orchid2"             
## [511] "orchid3"              "orchid4"              "palegoldenrod"       
## [514] "palegreen"            "palegreen1"           "palegreen2"          
## [517] "palegreen3"           "palegreen4"           "paleturquoise"       
## [520] "paleturquoise1"       "paleturquoise2"       "paleturquoise3"      
## [523] "paleturquoise4"       "palevioletred"        "palevioletred1"      
## [526] "palevioletred2"       "palevioletred3"       "palevioletred4"      
## [529] "papayawhip"           "peachpuff"            "peachpuff1"          
## [532] "peachpuff2"           "peachpuff3"           "peachpuff4"          
## [535] "peru"                 "pink"                 "pink1"               
## [538] "pink2"                "pink3"                "pink4"               
## [541] "plum"                 "plum1"                "plum2"               
## [544] "plum3"                "plum4"                "powderblue"          
## [547] "purple"               "purple1"              "purple2"             
## [550] "purple3"              "purple4"              "red"                 
## [553] "red1"                 "red2"                 "red3"                
## [556] "red4"                 "rosybrown"            "rosybrown1"          
## [559] "rosybrown2"           "rosybrown3"           "rosybrown4"          
## [562] "royalblue"            "royalblue1"           "royalblue2"          
## [565] "royalblue3"           "royalblue4"           "saddlebrown"         
## [568] "salmon"               "salmon1"              "salmon2"             
## [571] "salmon3"              "salmon4"              "sandybrown"          
## [574] "seagreen"             "seagreen1"            "seagreen2"           
## [577] "seagreen3"            "seagreen4"            "seashell"            
## [580] "seashell1"            "seashell2"            "seashell3"           
## [583] "seashell4"            "sienna"               "sienna1"             
## [586] "sienna2"              "sienna3"              "sienna4"             
## [589] "skyblue"              "skyblue1"             "skyblue2"            
## [592] "skyblue3"             "skyblue4"             "slateblue"           
## [595] "slateblue1"           "slateblue2"           "slateblue3"          
## [598] "slateblue4"           "slategray"            "slategray1"          
## [601] "slategray2"           "slategray3"           "slategray4"          
## [604] "slategrey"            "snow"                 "snow1"               
## [607] "snow2"                "snow3"                "snow4"               
## [610] "springgreen"          "springgreen1"         "springgreen2"        
## [613] "springgreen3"         "springgreen4"         "steelblue"           
## [616] "steelblue1"           "steelblue2"           "steelblue3"          
## [619] "steelblue4"           "tan"                  "tan1"                
## [622] "tan2"                 "tan3"                 "tan4"                
## [625] "thistle"              "thistle1"             "thistle2"            
## [628] "thistle3"             "thistle4"             "tomato"              
## [631] "tomato1"              "tomato2"              "tomato3"             
## [634] "tomato4"              "turquoise"            "turquoise1"          
## [637] "turquoise2"           "turquoise3"           "turquoise4"          
## [640] "violet"               "violetred"            "violetred1"          
## [643] "violetred2"           "violetred3"           "violetred4"          
## [646] "wheat"                "wheat1"               "wheat2"              
## [649] "wheat3"               "wheat4"               "whitesmoke"          
## [652] "yellow"               "yellow1"              "yellow2"             
## [655] "yellow3"              "yellow4"              "yellowgreen"
# Hexadecimal 
pie(tabela3,col = c("#FFFFFF", "#CCCCCC"), main="Gráfico 1 - Uso do programa de alimentação popular")

pie(tabela2)

pie (tabela4)

Todas as barras

#---------------------------------
# Gráfico de barras 
#---------------------------------

barplot(tabela4)

tabela4
## 
## Ensino fundamental       Ensino médio      Sem Instrução 
##                 38                 44                 38
# corrigir a ordem dos fatores
Familias$instr <- factor(Familias$instr,
                         levels = c("Sem Instrução",
                                    "Ensino fundamental",
                                    "Ensino médio"))
tabela4 <- table(Familias$instr)
barplot(tabela4)

barras <- barplot(tabela4,col = c("skyblue", "royalblue", "darkblue"), 
        main="Gráfico 2 - Escolaridade",
        ylim = c(0,50))

# Rótulo
text(barras, 0, tabela4, cex=3, pos=3, col = "white")