Background

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement – a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways.

The goal of the project is to predict the manner in which they did the exercise. This is the “classe” variable in the training set. You may use any of the other variables to predict with. You should create a report describing how you built your model, how you used cross validation, what you think the expected out of sample error is, and why you made the choices you did. You will also use your prediction model to predict 20 different test cases.

Data Loading and Processing

library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(rpart)
library(rpart.plot)
library(RColorBrewer)
library(rattle)
## Loading required package: tibble
## Loading required package: bitops
## Rattle: A free graphical interface for data science with R.
## Version 5.4.0 Copyright (c) 2006-2020 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:rattle':
## 
##     importance
## The following object is masked from 'package:ggplot2':
## 
##     margin
library(corrplot)
## corrplot 0.88 loaded
library(gbm)
## Loaded gbm 2.1.8

Exploration of Data

train_in <- read.csv("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv", sep = ",")
valid_in <- read.csv("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv", sep = ",")
dim(train_in)
## [1] 19622   160
dim(valid_in)
## [1]  20 160

##Cleaning the input data

trainData <- train_in[, colSums(is.na(train_in)) == 0]
validData <- valid_in[, colSums(is.na(valid_in))== 0]
dim(trainData)
## [1] 19622    93
dim(validData)
## [1] 20 60

Removal of variables

trainData<- trainData[, -c(1:7)]
validData<- validData[, -c(1:7)]
dim(trainData)
## [1] 19622    86
dim(validData)
## [1] 20 53

Prediction

Preparing the data for prediction by splitting the training data into 70% as train data and 30% as test data. This splitting will server also to compute the out-of-sample errors.

The test data renamed: valid_in (validate data) will stay as is and will be used later to test the prodction algorithm on the 20 cases.

set.seed(1234)
inTrain<- createDataPartition(trainData$classe,p=0.7, list = FALSE)
trainData <- trainData[inTrain, ]
testData <- trainData[-inTrain, ]
dim(trainData)
## [1] 13737    86
dim(testData)
## [1] 4123   86
NZV <- nearZeroVar(trainData)
trainData <- trainData[, -NZV]
testData <- testData[, -NZV]
dim(trainData)
## [1] 13737    53
dim(testData)
## [1] 4123   53

After this cleaning we are down now to 53 variables

The following correlation plot uses the following parameters (source:CRAN Package ‘corrplot’) “FPC”: the first principal component order. “AOE”: the angular order tl.cex Numeric, for the size of text label (variable names) tl.col The color of text label.

cor_mat <- cor(trainData[, -53])
corrplot(cor_mat, order = "FPC", method = "color", type = "upper", tl.cex = 0.8, tl.col = rgb(0,0,0))

In the corrplot graph the correlated predictors (variables ) are those with a dark color intersection.

highlyCorrelated = findCorrelation(cor_mat, cutoff = 0.75)
names(trainData)[highlyCorrelated]
##  [1] "accel_belt_z"      "roll_belt"         "accel_belt_y"     
##  [4] "total_accel_belt"  "accel_dumbbell_z"  "accel_belt_x"     
##  [7] "pitch_belt"        "magnet_dumbbell_x" "accel_dumbbell_y" 
## [10] "magnet_dumbbell_y" "accel_dumbbell_x"  "accel_arm_x"      
## [13] "accel_arm_z"       "magnet_arm_y"      "magnet_belt_z"    
## [16] "accel_forearm_y"   "gyros_forearm_y"   "gyros_dumbbell_x" 
## [19] "gyros_dumbbell_z"  "gyros_arm_x"

Model Building

For this project we will use two different algorithms, classification trees and random forests, to predict the outcome.

classification trees random forests Generalized Boosted Model

Prediction with classification trees

We first obtain the model, and then we use the fancyRpartPlot() function to plot the classification tree as a dendogram

set.seed(12345)
decisionTreeMod1 <- rpart(classe ~., data = trainData, method="class")
fancyRpartPlot(decisionTreeMod1)
## Warning: labs do not fit even at cex 0.15, there may be some overplotting

We then validate the model <- “decisionTreeModel” on the testData to find out how well it performs by looking at the accuracy variable.

predictTreeMod1 <- predict(decisionTreeMod1, testData, type = "class")
cmtree <- confusionMatrix(as.factor(predictTreeMod1), as.factor(testData$classe))
cmtree
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    A    B    C    D    E
##          A 1067  105    9   24    9
##          B   40  502   59   63   77
##          C   28   90  611  116   86
##          D   11   49   41  423   41
##          E   19   41   18   46  548
## 
## Overall Statistics
##                                          
##                Accuracy : 0.7642         
##                  95% CI : (0.751, 0.7771)
##     No Information Rate : 0.2826         
##     P-Value [Acc > NIR] : < 2.2e-16      
##                                          
##                   Kappa : 0.7015         
##                                          
##  Mcnemar's Test P-Value : < 2.2e-16      
## 
## Statistics by Class:
## 
##                      Class: A Class: B Class: C Class: D Class: E
## Sensitivity            0.9159   0.6379   0.8279   0.6295   0.7201
## Specificity            0.9503   0.9284   0.9055   0.9589   0.9631
## Pos Pred Value         0.8789   0.6775   0.6563   0.7487   0.8155
## Neg Pred Value         0.9663   0.9157   0.9602   0.9300   0.9383
## Prevalence             0.2826   0.1909   0.1790   0.1630   0.1846
## Detection Rate         0.2588   0.1218   0.1482   0.1026   0.1329
## Detection Prevalence   0.2944   0.1797   0.2258   0.1370   0.1630
## Balanced Accuracy      0.9331   0.7831   0.8667   0.7942   0.8416

##Plot matrix results

plot(cmtree$table, col = cmtree$byClass, main = paste("Decision Tree - Accuracy =", round(cmtree$overall['Accuracy'],4)))

We see that the accuracy rate of the model is low: 0.6967 and therefore the out-of-sample-error is about 0.3 which is considerable.

##Prediction with Random Forest

We first determine the model

controlRF <- trainControl(method="cv", number=3, verboseIter=FALSE)
modRF1 <- train(classe ~., data=trainData, method="rf", trControl = controlRF)
modRF1$finalModel
## 
## Call:
##  randomForest(x = x, y = y, mtry = param$mtry) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 27
## 
##         OOB estimate of  error rate: 0.7%
## Confusion matrix:
##      A    B    C    D    E class.error
## A 3902    3    0    0    1 0.001024066
## B   19 2634    5    0    0 0.009029345
## C    0   17 2369   10    0 0.011268781
## D    0    1   26 2224    1 0.012433393
## E    0    2    5    6 2512 0.005148515

We then validate the obtained model “modRF1” on the test data to find out how well it performs by looking at the Accuracy variable.

predictRF1 <- predict(modRF1, newdata=testData)
cmrf <- confusionMatrix(as.factor(predictRF1), as.factor(testData$classe))
cmrf
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    A    B    C    D    E
##          A 1165    0    0    0    0
##          B    0  787    0    0    0
##          C    0    0  738    0    0
##          D    0    0    0  672    0
##          E    0    0    0    0  761
## 
## Overall Statistics
##                                      
##                Accuracy : 1          
##                  95% CI : (0.9991, 1)
##     No Information Rate : 0.2826     
##     P-Value [Acc > NIR] : < 2.2e-16  
##                                      
##                   Kappa : 1          
##                                      
##  Mcnemar's Test P-Value : NA         
## 
## Statistics by Class:
## 
##                      Class: A Class: B Class: C Class: D Class: E
## Sensitivity            1.0000   1.0000    1.000    1.000   1.0000
## Specificity            1.0000   1.0000    1.000    1.000   1.0000
## Pos Pred Value         1.0000   1.0000    1.000    1.000   1.0000
## Neg Pred Value         1.0000   1.0000    1.000    1.000   1.0000
## Prevalence             0.2826   0.1909    0.179    0.163   0.1846
## Detection Rate         0.2826   0.1909    0.179    0.163   0.1846
## Detection Prevalence   0.2826   0.1909    0.179    0.163   0.1846
## Balanced Accuracy      1.0000   1.0000    1.000    1.000   1.0000

The accuracy rate using the random forest is very high: Accuracy : 1 and therefore the out-of-sample-error is equal to 0***. But it might be due to overfitting.

plot(modRF1)

plot(cmrf$table, col = cmrf$byClass, main = paste("Random Forest Confusion Matrix: Accuracy", round(cmrf$overall['Accuracy'],4)))

Prediction with Generalized Boosted Regression Models

set.seed(12345)
controlGBM <- trainControl(method = "repeatedcv", number = 5, repeats = 1)
modGBM  <- train(classe ~ ., data=trainData, method = "gbm", trControl = controlGBM, verbose = FALSE)
modGBM$finalModel
## A gradient boosted model with multinomial loss function.
## 150 iterations were performed.
## There were 52 predictors of which 52 had non-zero influence.
print(modGBM)
## Stochastic Gradient Boosting 
## 
## 13737 samples
##    52 predictor
##     5 classes: 'A', 'B', 'C', 'D', 'E' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 1 times) 
## Summary of sample sizes: 10990, 10990, 10989, 10991, 10988 
## Resampling results across tuning parameters:
## 
##   interaction.depth  n.trees  Accuracy   Kappa    
##   1                   50      0.7521285  0.6858434
##   1                  100      0.8227397  0.7756753
##   1                  150      0.8522224  0.8130469
##   2                   50      0.8564452  0.8181267
##   2                  100      0.9059465  0.8809760
##   2                  150      0.9301168  0.9115592
##   3                   50      0.8969931  0.8695557
##   3                  100      0.9392159  0.9230740
##   3                  150      0.9587251  0.9477728
## 
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
## 
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were n.trees = 150, interaction.depth =
##  3, shrinkage = 0.1 and n.minobsinnode = 10.

Validate the GBM model

predictGBM <- predict(modGBM, newdata=testData)
cmGBM <- confusionMatrix(as.factor(predictGBM), as.factor(testData$classe))
cmGBM
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    A    B    C    D    E
##          A 1155   20    0    0    1
##          B    9  754   17    5    6
##          C    1   12  713   16    3
##          D    0    1    6  647    8
##          E    0    0    2    4  743
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9731          
##                  95% CI : (0.9677, 0.9778)
##     No Information Rate : 0.2826          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.966           
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: A Class: B Class: C Class: D Class: E
## Sensitivity            0.9914   0.9581   0.9661   0.9628   0.9763
## Specificity            0.9929   0.9889   0.9905   0.9957   0.9982
## Pos Pred Value         0.9821   0.9532   0.9570   0.9773   0.9920
## Neg Pred Value         0.9966   0.9901   0.9926   0.9928   0.9947
## Prevalence             0.2826   0.1909   0.1790   0.1630   0.1846
## Detection Rate         0.2801   0.1829   0.1729   0.1569   0.1802
## Detection Prevalence   0.2852   0.1919   0.1807   0.1606   0.1817
## Balanced Accuracy      0.9922   0.9735   0.9783   0.9792   0.9873

The accuracy rate using the random forest is very high: Accuracy : 0.9736 and therefore the *out-of-sample-error is equal to 0.0264**.

Applying the best model to the validation data

By comparing the accuracy rate values of the three models, it is clear the the ‘Random Forest’ model is the winner. So will use it on the validation data

Results <- predict(modRF1, newdata=validData)
Results
##  [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E

The Results output will be used to answer the “Course Project Prediction Quiz”