Using R, generate a random variable X that has 10,000 random uniform numbers from 1 to N, where N can be any number of your choosing greater than or equal to 6. Then generate a random variable Y that has 10,000 random normal numbers with a mean of \(\mu = \sigma = (N+1)/2\).
set.seed(5432)
n <- 10000
N <- 10
sigma <- (N + 1)/2
df <- data.frame(X = runif(n, min = 1, max = N), Y = rnorm(n, mean = sigma, sd = sigma))
head(df,5)
## X Y
## 1 5.095135 3.755059
## 2 3.288050 8.498194
## 3 9.097577 4.651931
## 4 4.226510 6.247689
## 5 2.431395 -3.720824
Checking that the distribution of 10000 random numbers is normal.
hist(df$Y, col = 'lightblue', breaks = 20)
Calculate as a minimum the below probabilities a through c. Assume the small letter “x” is estimated as the median of the X variable, and the small letter “y” is estimated as the 1st quartile of the Y variable. Interpret the meaning of all probabilities.
Median of the x variable as median of IQR
x = quantile(df$X, 0.5)
x
## 50%
## 5.492108
Median of the y variable as 1st quartile
y = quantile(df$Y, 0.25)
y
## 25%
## 1.734326
prob_Xx_Xy = df %>% filter(X > x, X > y) %>% nrow()/n
prob_Xy = df %>% filter(X > y) %>% nrow()/n
prob1 = prob_Xx_Xy/prob_Xy
round(prob1,3)
## [1] 0.543
The probability that X is greater than its median given that X is greater than Q1 of Y is 0.543
prob_Xx_Yy <- df %>% filter(X > x, Y > y) %>% nrow()/n
round(prob_Xx_Yy,3)
## [1] 0.372
The probability of X>x and Y>y is 0.372
prob_xX_Xy = df %>% filter(X < x, X > y) %>% nrow()/n
prob_Xy = df %>% filter(X > y) %>% nrow()/n
prob2 = prob_xX_Xy/prob_Xy
round(prob2,3)
## [1] 0.457
The probability of X being less than its median and greater than Q1 of Y is 0.457
Joint probability:
joint_prob_AB = df %>%
mutate(A = ifelse(X > x, "X > x", "X < x"), B = ifelse(Y > y, " Y > y", " Y < y")) %>%
group_by(A, B) %>%
summarise(count = n()) %>%
mutate(probability = count/n)
joint_prob_AB
## # A tibble: 4 x 4
## # Groups: A [2]
## A B count probability
## <chr> <chr> <int> <dbl>
## 1 X < x " Y < y" 1220 0.122
## 2 X < x " Y > y" 3780 0.378
## 3 X > x " Y < y" 1280 0.128
## 4 X > x " Y > y" 3720 0.372
Marginal probabilities:
marg_prob_A = joint_prob_AB %>%
ungroup() %>%
group_by(A) %>%
summarize(count = sum(count), probability = sum(probability))
marg_prob_A
## # A tibble: 2 x 3
## A count probability
## * <chr> <int> <dbl>
## 1 X < x 5000 0.5
## 2 X > x 5000 0.5
marg_prob_B = joint_prob_AB %>%
ungroup() %>%
group_by(B) %>%
summarize(count = sum(count), probability = sum(probability))
marg_prob_A
## # A tibble: 2 x 3
## A count probability
## * <chr> <int> <dbl>
## 1 X < x 5000 0.5
## 2 X > x 5000 0.5
Build the table
tab <- bind_rows(joint_prob_AB, marg_prob_A, marg_prob_B) %>%
dplyr::select(-count) %>%
spread(A, probability)
tab$B[is.na(tab$B)] <- "Total"
tab <- tab %>%
rename(Event = 'B')
names(tab)[4] <- "Total"
tab[,4][is.na(tab[,4])] <- 1
tab
## # A tibble: 3 x 4
## Event `X < x` `X > x` Total
## <chr> <dbl> <dbl> <dbl>
## 1 " Y < y" 0.122 0.128 0.25
## 2 " Y > y" 0.378 0.372 0.75
## 3 "Total" 0.5 0.5 1
Evaluation:
P(X>x and Y>y) = 0.372
P(X>x)P(Y>y) = (0.5000)*(0.75) = 0.375
This is close enough to say that P(X>x and Y>y) = P(X>x)P(Y>y).
Fisher’s Exact Test is used with small sample sets and the Chi Squared Test with larger sample sets. Since we are using 10000 samples I would say Chi Square is more appropriate. With the results in both tests coming in with p-values above 0.05 (0.173 for both), I would say we cannot reject the null hypothesis and say that independence does hold for X and Y.
Fisher’s Exact Test
df_table <- table(df$X > x, df$Y>y)
fisher.test(df_table)
##
## Fisher's Exact Test for Count Data
##
## data: df_table
## p-value = 0.173
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.8559101 1.0279714
## sample estimates:
## odds ratio
## 0.9380243
Chi Square Test
chisq.test(df_table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: df_table
## X-squared = 1.8565, df = 1, p-value = 0.173
You are to register for Kaggle.com (free) and compete in the House Prices: Advanced Regression Techniques competition. https://www.kaggle.com/c/house-prices-advanced-regression-techniques . I want you to do the following.
Load the train and test datasets from my GitHub coursedata repo.
house_train <- read.csv("https://raw.githubusercontent.com/douglasbarley/coursedata/master/train.csv", header = TRUE, stringsAsFactors = FALSE)
house_test <- read.csv("https://raw.githubusercontent.com/douglasbarley/coursedata/master/test.csv", header = TRUE, stringsAsFactors = FALSE)
Look at the structure of the data.
str(house_train)
## 'data.frame': 1460 obs. of 81 variables:
## $ Id : int 1 2 3 4 5 6 7 8 9 10 ...
## $ MSSubClass : int 60 20 60 70 60 50 20 60 50 190 ...
## $ MSZoning : chr "RL" "RL" "RL" "RL" ...
## $ LotFrontage : int 65 80 68 60 84 85 75 NA 51 50 ...
## $ LotArea : int 8450 9600 11250 9550 14260 14115 10084 10382 6120 7420 ...
## $ Street : chr "Pave" "Pave" "Pave" "Pave" ...
## $ Alley : chr NA NA NA NA ...
## $ LotShape : chr "Reg" "Reg" "IR1" "IR1" ...
## $ LandContour : chr "Lvl" "Lvl" "Lvl" "Lvl" ...
## $ Utilities : chr "AllPub" "AllPub" "AllPub" "AllPub" ...
## $ LotConfig : chr "Inside" "FR2" "Inside" "Corner" ...
## $ LandSlope : chr "Gtl" "Gtl" "Gtl" "Gtl" ...
## $ Neighborhood : chr "CollgCr" "Veenker" "CollgCr" "Crawfor" ...
## $ Condition1 : chr "Norm" "Feedr" "Norm" "Norm" ...
## $ Condition2 : chr "Norm" "Norm" "Norm" "Norm" ...
## $ BldgType : chr "1Fam" "1Fam" "1Fam" "1Fam" ...
## $ HouseStyle : chr "2Story" "1Story" "2Story" "2Story" ...
## $ OverallQual : int 7 6 7 7 8 5 8 7 7 5 ...
## $ OverallCond : int 5 8 5 5 5 5 5 6 5 6 ...
## $ YearBuilt : int 2003 1976 2001 1915 2000 1993 2004 1973 1931 1939 ...
## $ YearRemodAdd : int 2003 1976 2002 1970 2000 1995 2005 1973 1950 1950 ...
## $ RoofStyle : chr "Gable" "Gable" "Gable" "Gable" ...
## $ RoofMatl : chr "CompShg" "CompShg" "CompShg" "CompShg" ...
## $ Exterior1st : chr "VinylSd" "MetalSd" "VinylSd" "Wd Sdng" ...
## $ Exterior2nd : chr "VinylSd" "MetalSd" "VinylSd" "Wd Shng" ...
## $ MasVnrType : chr "BrkFace" "None" "BrkFace" "None" ...
## $ MasVnrArea : int 196 0 162 0 350 0 186 240 0 0 ...
## $ ExterQual : chr "Gd" "TA" "Gd" "TA" ...
## $ ExterCond : chr "TA" "TA" "TA" "TA" ...
## $ Foundation : chr "PConc" "CBlock" "PConc" "BrkTil" ...
## $ BsmtQual : chr "Gd" "Gd" "Gd" "TA" ...
## $ BsmtCond : chr "TA" "TA" "TA" "Gd" ...
## $ BsmtExposure : chr "No" "Gd" "Mn" "No" ...
## $ BsmtFinType1 : chr "GLQ" "ALQ" "GLQ" "ALQ" ...
## $ BsmtFinSF1 : int 706 978 486 216 655 732 1369 859 0 851 ...
## $ BsmtFinType2 : chr "Unf" "Unf" "Unf" "Unf" ...
## $ BsmtFinSF2 : int 0 0 0 0 0 0 0 32 0 0 ...
## $ BsmtUnfSF : int 150 284 434 540 490 64 317 216 952 140 ...
## $ TotalBsmtSF : int 856 1262 920 756 1145 796 1686 1107 952 991 ...
## $ Heating : chr "GasA" "GasA" "GasA" "GasA" ...
## $ HeatingQC : chr "Ex" "Ex" "Ex" "Gd" ...
## $ CentralAir : chr "Y" "Y" "Y" "Y" ...
## $ Electrical : chr "SBrkr" "SBrkr" "SBrkr" "SBrkr" ...
## $ X1stFlrSF : int 856 1262 920 961 1145 796 1694 1107 1022 1077 ...
## $ X2ndFlrSF : int 854 0 866 756 1053 566 0 983 752 0 ...
## $ LowQualFinSF : int 0 0 0 0 0 0 0 0 0 0 ...
## $ GrLivArea : int 1710 1262 1786 1717 2198 1362 1694 2090 1774 1077 ...
## $ BsmtFullBath : int 1 0 1 1 1 1 1 1 0 1 ...
## $ BsmtHalfBath : int 0 1 0 0 0 0 0 0 0 0 ...
## $ FullBath : int 2 2 2 1 2 1 2 2 2 1 ...
## $ HalfBath : int 1 0 1 0 1 1 0 1 0 0 ...
## $ BedroomAbvGr : int 3 3 3 3 4 1 3 3 2 2 ...
## $ KitchenAbvGr : int 1 1 1 1 1 1 1 1 2 2 ...
## $ KitchenQual : chr "Gd" "TA" "Gd" "Gd" ...
## $ TotRmsAbvGrd : int 8 6 6 7 9 5 7 7 8 5 ...
## $ Functional : chr "Typ" "Typ" "Typ" "Typ" ...
## $ Fireplaces : int 0 1 1 1 1 0 1 2 2 2 ...
## $ FireplaceQu : chr NA "TA" "TA" "Gd" ...
## $ GarageType : chr "Attchd" "Attchd" "Attchd" "Detchd" ...
## $ GarageYrBlt : int 2003 1976 2001 1998 2000 1993 2004 1973 1931 1939 ...
## $ GarageFinish : chr "RFn" "RFn" "RFn" "Unf" ...
## $ GarageCars : int 2 2 2 3 3 2 2 2 2 1 ...
## $ GarageArea : int 548 460 608 642 836 480 636 484 468 205 ...
## $ GarageQual : chr "TA" "TA" "TA" "TA" ...
## $ GarageCond : chr "TA" "TA" "TA" "TA" ...
## $ PavedDrive : chr "Y" "Y" "Y" "Y" ...
## $ WoodDeckSF : int 0 298 0 0 192 40 255 235 90 0 ...
## $ OpenPorchSF : int 61 0 42 35 84 30 57 204 0 4 ...
## $ EnclosedPorch: int 0 0 0 272 0 0 0 228 205 0 ...
## $ X3SsnPorch : int 0 0 0 0 0 320 0 0 0 0 ...
## $ ScreenPorch : int 0 0 0 0 0 0 0 0 0 0 ...
## $ PoolArea : int 0 0 0 0 0 0 0 0 0 0 ...
## $ PoolQC : chr NA NA NA NA ...
## $ Fence : chr NA NA NA NA ...
## $ MiscFeature : chr NA NA NA NA ...
## $ MiscVal : int 0 0 0 0 0 700 0 350 0 0 ...
## $ MoSold : int 2 5 9 2 12 10 8 11 4 1 ...
## $ YrSold : int 2008 2007 2008 2006 2008 2009 2007 2009 2008 2008 ...
## $ SaleType : chr "WD" "WD" "WD" "WD" ...
## $ SaleCondition: chr "Normal" "Normal" "Normal" "Abnorml" ...
## $ SalePrice : int 208500 181500 223500 140000 250000 143000 307000 200000 129900 118000 ...
and look at summary stats of the data.
summary(house_train)
## Id MSSubClass MSZoning LotFrontage
## Min. : 1.0 Min. : 20.0 Length:1460 Min. : 21.00
## 1st Qu.: 365.8 1st Qu.: 20.0 Class :character 1st Qu.: 59.00
## Median : 730.5 Median : 50.0 Mode :character Median : 69.00
## Mean : 730.5 Mean : 56.9 Mean : 70.05
## 3rd Qu.:1095.2 3rd Qu.: 70.0 3rd Qu.: 80.00
## Max. :1460.0 Max. :190.0 Max. :313.00
## NA's :259
## LotArea Street Alley LotShape
## Min. : 1300 Length:1460 Length:1460 Length:1460
## 1st Qu.: 7554 Class :character Class :character Class :character
## Median : 9478 Mode :character Mode :character Mode :character
## Mean : 10517
## 3rd Qu.: 11602
## Max. :215245
##
## LandContour Utilities LotConfig LandSlope
## Length:1460 Length:1460 Length:1460 Length:1460
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## Neighborhood Condition1 Condition2 BldgType
## Length:1460 Length:1460 Length:1460 Length:1460
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## HouseStyle OverallQual OverallCond YearBuilt
## Length:1460 Min. : 1.000 Min. :1.000 Min. :1872
## Class :character 1st Qu.: 5.000 1st Qu.:5.000 1st Qu.:1954
## Mode :character Median : 6.000 Median :5.000 Median :1973
## Mean : 6.099 Mean :5.575 Mean :1971
## 3rd Qu.: 7.000 3rd Qu.:6.000 3rd Qu.:2000
## Max. :10.000 Max. :9.000 Max. :2010
##
## YearRemodAdd RoofStyle RoofMatl Exterior1st
## Min. :1950 Length:1460 Length:1460 Length:1460
## 1st Qu.:1967 Class :character Class :character Class :character
## Median :1994 Mode :character Mode :character Mode :character
## Mean :1985
## 3rd Qu.:2004
## Max. :2010
##
## Exterior2nd MasVnrType MasVnrArea ExterQual
## Length:1460 Length:1460 Min. : 0.0 Length:1460
## Class :character Class :character 1st Qu.: 0.0 Class :character
## Mode :character Mode :character Median : 0.0 Mode :character
## Mean : 103.7
## 3rd Qu.: 166.0
## Max. :1600.0
## NA's :8
## ExterCond Foundation BsmtQual BsmtCond
## Length:1460 Length:1460 Length:1460 Length:1460
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## BsmtExposure BsmtFinType1 BsmtFinSF1 BsmtFinType2
## Length:1460 Length:1460 Min. : 0.0 Length:1460
## Class :character Class :character 1st Qu.: 0.0 Class :character
## Mode :character Mode :character Median : 383.5 Mode :character
## Mean : 443.6
## 3rd Qu.: 712.2
## Max. :5644.0
##
## BsmtFinSF2 BsmtUnfSF TotalBsmtSF Heating
## Min. : 0.00 Min. : 0.0 Min. : 0.0 Length:1460
## 1st Qu.: 0.00 1st Qu.: 223.0 1st Qu.: 795.8 Class :character
## Median : 0.00 Median : 477.5 Median : 991.5 Mode :character
## Mean : 46.55 Mean : 567.2 Mean :1057.4
## 3rd Qu.: 0.00 3rd Qu.: 808.0 3rd Qu.:1298.2
## Max. :1474.00 Max. :2336.0 Max. :6110.0
##
## HeatingQC CentralAir Electrical X1stFlrSF
## Length:1460 Length:1460 Length:1460 Min. : 334
## Class :character Class :character Class :character 1st Qu.: 882
## Mode :character Mode :character Mode :character Median :1087
## Mean :1163
## 3rd Qu.:1391
## Max. :4692
##
## X2ndFlrSF LowQualFinSF GrLivArea BsmtFullBath
## Min. : 0 Min. : 0.000 Min. : 334 Min. :0.0000
## 1st Qu.: 0 1st Qu.: 0.000 1st Qu.:1130 1st Qu.:0.0000
## Median : 0 Median : 0.000 Median :1464 Median :0.0000
## Mean : 347 Mean : 5.845 Mean :1515 Mean :0.4253
## 3rd Qu.: 728 3rd Qu.: 0.000 3rd Qu.:1777 3rd Qu.:1.0000
## Max. :2065 Max. :572.000 Max. :5642 Max. :3.0000
##
## BsmtHalfBath FullBath HalfBath BedroomAbvGr
## Min. :0.00000 Min. :0.000 Min. :0.0000 Min. :0.000
## 1st Qu.:0.00000 1st Qu.:1.000 1st Qu.:0.0000 1st Qu.:2.000
## Median :0.00000 Median :2.000 Median :0.0000 Median :3.000
## Mean :0.05753 Mean :1.565 Mean :0.3829 Mean :2.866
## 3rd Qu.:0.00000 3rd Qu.:2.000 3rd Qu.:1.0000 3rd Qu.:3.000
## Max. :2.00000 Max. :3.000 Max. :2.0000 Max. :8.000
##
## KitchenAbvGr KitchenQual TotRmsAbvGrd Functional
## Min. :0.000 Length:1460 Min. : 2.000 Length:1460
## 1st Qu.:1.000 Class :character 1st Qu.: 5.000 Class :character
## Median :1.000 Mode :character Median : 6.000 Mode :character
## Mean :1.047 Mean : 6.518
## 3rd Qu.:1.000 3rd Qu.: 7.000
## Max. :3.000 Max. :14.000
##
## Fireplaces FireplaceQu GarageType GarageYrBlt
## Min. :0.000 Length:1460 Length:1460 Min. :1900
## 1st Qu.:0.000 Class :character Class :character 1st Qu.:1961
## Median :1.000 Mode :character Mode :character Median :1980
## Mean :0.613 Mean :1979
## 3rd Qu.:1.000 3rd Qu.:2002
## Max. :3.000 Max. :2010
## NA's :81
## GarageFinish GarageCars GarageArea GarageQual
## Length:1460 Min. :0.000 Min. : 0.0 Length:1460
## Class :character 1st Qu.:1.000 1st Qu.: 334.5 Class :character
## Mode :character Median :2.000 Median : 480.0 Mode :character
## Mean :1.767 Mean : 473.0
## 3rd Qu.:2.000 3rd Qu.: 576.0
## Max. :4.000 Max. :1418.0
##
## GarageCond PavedDrive WoodDeckSF OpenPorchSF
## Length:1460 Length:1460 Min. : 0.00 Min. : 0.00
## Class :character Class :character 1st Qu.: 0.00 1st Qu.: 0.00
## Mode :character Mode :character Median : 0.00 Median : 25.00
## Mean : 94.24 Mean : 46.66
## 3rd Qu.:168.00 3rd Qu.: 68.00
## Max. :857.00 Max. :547.00
##
## EnclosedPorch X3SsnPorch ScreenPorch PoolArea
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.000
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.000
## Mean : 21.95 Mean : 3.41 Mean : 15.06 Mean : 2.759
## 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.000
## Max. :552.00 Max. :508.00 Max. :480.00 Max. :738.000
##
## PoolQC Fence MiscFeature MiscVal
## Length:1460 Length:1460 Length:1460 Min. : 0.00
## Class :character Class :character Class :character 1st Qu.: 0.00
## Mode :character Mode :character Mode :character Median : 0.00
## Mean : 43.49
## 3rd Qu.: 0.00
## Max. :15500.00
##
## MoSold YrSold SaleType SaleCondition
## Min. : 1.000 Min. :2006 Length:1460 Length:1460
## 1st Qu.: 5.000 1st Qu.:2007 Class :character Class :character
## Median : 6.000 Median :2008 Mode :character Mode :character
## Mean : 6.322 Mean :2008
## 3rd Qu.: 8.000 3rd Qu.:2009
## Max. :12.000 Max. :2010
##
## SalePrice
## Min. : 34900
## 1st Qu.:129975
## Median :163000
## Mean :180921
## 3rd Qu.:214000
## Max. :755000
##
Let’s look at some dimensions that we intuitively think might impact price.
hist(house_train$GrLivArea, main = "Above Ground Living Area", xlab = "Above Ground Living Area (sq ft)", ylab = "Count", col="lightblue", breaks = 20)
Most houses on the market appear to have between 1200 and 1800 sq ft.
hist(house_train$TotRmsAbvGrd, main = "Total Rooms Above Ground", xlab = "Total # Rooms Above Ground", ylab = "Count", col="lightblue", breaks = 10)
Most houses appear to have between 5 and 7 rooms above ground.
hist(house_train$GarageCars, main = "Garage Capacity", xlab = "# Cars", ylab = "Count", col="lightblue", breaks = 5)
Most houses appear to have a 2-car garage.
hist(house_train$FullBath, main = "Number of Baths", xlab = "# Baths", ylab = "Count", col="lightblue", breaks = 2)
Most houses appear to have a 1-2 bathrooms.
hist(house_train$YearBuilt, main = "Year Built", xlab = "Decade Built", ylab = "Count", col="lightblue", breaks = 15)
It appears there were building booms for housing in the 1950s, 60s and 70s, a lull in the 1980s and a spike in the 1990s and 2000s. This should mean that there are more newer homes on the market than older homes.
In terms of training and predicting the pricing, which is the dependent variable (SalePrice), my hunch is that “Above grade (ground) living area square feet” (GrLivArea), the configuration of total square feet in terms of “Total rooms above grade (does not include bathrooms)” (TotRmsAbvGrd), Size of garage in car capacity (GarageCars), “Full bathrooms above grade” (FullBath), and year built (YearBuilt) might have significant impacts on price.
corr_df <- house_train %>%
dplyr::select("SalePrice", "GrLivArea", "TotRmsAbvGrd", "GarageCars", "FullBath", "YearBuilt") %>%
replace(is.na(.),0)
pairs(corr_df)
There appear to be positive correlations between Sales Price and all five other dimensions: above-ground living area, total rooms above ground, the number of cars that fit in the garage, the number of full bathrooms and the year built.
Let’s see if we can more accurately quantify the correlations among the variables by looking at a correlation matrix.
corr_matrix <- cor(corr_df, method = "pearson")
round(corr_matrix, 4)
## SalePrice GrLivArea TotRmsAbvGrd GarageCars FullBath YearBuilt
## SalePrice 1.0000 0.7086 0.5337 0.6404 0.5607 0.5229
## GrLivArea 0.7086 1.0000 0.8255 0.4672 0.6300 0.1990
## TotRmsAbvGrd 0.5337 0.8255 1.0000 0.3623 0.5548 0.0956
## GarageCars 0.6404 0.4672 0.3623 1.0000 0.4697 0.5379
## FullBath 0.5607 0.6300 0.5548 0.4697 1.0000 0.4683
## YearBuilt 0.5229 0.1990 0.0956 0.5379 0.4683 1.0000
This correlation matrix clarifies quantitatively what the scatterplot matrix suggested visually, since we can see more clearly that all five independent variables correlate with price > 0.5, with total above-ground living area and space for cars in the garage correlating 0.0786 and 0.6404 respectively with regard to sale price.
I ran Chi-Squared tests on each of the independent variables against the Sale Price. All five independent variables return a p-value of < 2.2e-16 against Sales Price, meaning we can reject the null hypothesis for each independent variable and accept that there is a correlation between each independent variable and sale price. The individual correlation tests confirm the correlation values in the correlation matrix, with above-ground living area having the greatest correlation to sale price, and the year built having the lowest positive correlation.
Given that the correlation to sale price for each independent variable is > 0.5, I would not be worried about familywise error (also known as Type 1 error, or false positives). If the correlations were more weak perhaps I would be more concerned about it.
cor.test(house_train$GrLivArea, house_train$SalePrice, conf.level = 0.8)
##
## Pearson's product-moment correlation
##
## data: house_train$GrLivArea and house_train$SalePrice
## t = 38.348, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
## 0.6915087 0.7249450
## sample estimates:
## cor
## 0.7086245
cor.test(house_train$TotRmsAbvGrd, house_train$SalePrice, conf.level = 0.8)
##
## Pearson's product-moment correlation
##
## data: house_train$TotRmsAbvGrd and house_train$SalePrice
## t = 24.099, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
## 0.5092841 0.5573021
## sample estimates:
## cor
## 0.5337232
cor.test(house_train$GarageCars, house_train$SalePrice, conf.level = 0.8)
##
## Pearson's product-moment correlation
##
## data: house_train$GarageCars and house_train$SalePrice
## t = 31.839, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
## 0.6201771 0.6597899
## sample estimates:
## cor
## 0.6404092
cor.test(house_train$FullBath, house_train$SalePrice, conf.level = 0.8)
##
## Pearson's product-moment correlation
##
## data: house_train$FullBath and house_train$SalePrice
## t = 25.854, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
## 0.5372107 0.5832505
## sample estimates:
## cor
## 0.5606638
cor.test(house_train$YearBuilt, house_train$SalePrice, conf.level = 0.8)
##
## Pearson's product-moment correlation
##
## data: house_train$YearBuilt and house_train$SalePrice
## t = 23.424, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
## 0.4980766 0.5468619
## sample estimates:
## cor
## 0.5228973
Invert your correlation matrix from above. (This is known as the precision matrix and contains variance inflation factors on the diagonal.)
precision <- solve(corr_matrix)
precision
## SalePrice GrLivArea TotRmsAbvGrd GarageCars FullBath
## SalePrice 3.2003001 -2.0147950 0.23692286 -0.74378555 0.14355914
## GrLivArea -2.0147950 5.1001626 -2.65302497 -0.12292794 -0.92441627
## TotRmsAbvGrd 0.2369229 -2.6530250 3.28250258 -0.09122621 -0.39053841
## GarageCars -0.7437855 -0.1229279 -0.09122621 1.91224091 -0.08850805
## FullBath 0.1435591 -0.9244163 -0.39053841 -0.08850805 2.13823869
## YearBuilt -0.9622913 0.7911433 0.32226360 -0.56494565 -0.80743830
## YearBuilt
## SalePrice -0.9622913
## GrLivArea 0.7911433
## TotRmsAbvGrd 0.3222636
## GarageCars -0.5649456
## FullBath -0.8074383
## YearBuilt 1.9968853
It appears that above-ground living area has the greatest variance inflation factor, and garage capacity the least.
Multiply the correlation matrix by the precision matrix, and then multiply the precision matrix by the correlation matrix.
corr_precision <- corr_matrix %*% precision
corr_precision
## SalePrice GrLivArea TotRmsAbvGrd GarageCars
## SalePrice 1.000000e+00 1.665335e-16 5.551115e-17 5.551115e-17
## GrLivArea 1.387779e-16 1.000000e+00 1.804112e-16 8.326673e-17
## TotRmsAbvGrd 6.938894e-17 4.579670e-16 1.000000e+00 -6.938894e-17
## GarageCars 0.000000e+00 2.775558e-16 0.000000e+00 1.000000e+00
## FullBath 2.220446e-16 1.110223e-16 -1.387779e-16 0.000000e+00
## YearBuilt 0.000000e+00 0.000000e+00 -5.551115e-17 2.220446e-16
## FullBath YearBuilt
## SalePrice 0.000000e+00 0.000000e+00
## GrLivArea -8.326673e-17 -5.551115e-17
## TotRmsAbvGrd 2.775558e-17 2.775558e-17
## GarageCars -1.665335e-16 0.000000e+00
## FullBath 1.000000e+00 -1.110223e-16
## YearBuilt -1.110223e-16 1.000000e+00
and then multiply the precision matrix by the correlation matrix.
precision_corr <- precision %*% corr_matrix
precision_corr
## SalePrice GrLivArea TotRmsAbvGrd GarageCars
## SalePrice 1.000000e+00 3.885781e-16 2.359224e-16 2.220446e-16
## GrLivArea 2.220446e-16 1.000000e+00 4.440892e-16 3.330669e-16
## TotRmsAbvGrd 0.000000e+00 9.714451e-17 1.000000e+00 -2.775558e-17
## GarageCars -1.665335e-16 -1.249001e-16 -1.665335e-16 1.000000e+00
## FullBath 1.110223e-16 -8.326673e-17 2.775558e-17 -1.665335e-16
## YearBuilt -2.220446e-16 -5.551115e-17 2.775558e-17 0.000000e+00
## FullBath YearBuilt
## SalePrice 3.885781e-16 2.220446e-16
## GrLivArea 1.665335e-16 -1.110223e-16
## TotRmsAbvGrd -2.498002e-16 -5.551115e-17
## GarageCars -1.665335e-16 0.000000e+00
## FullBath 1.000000e+00 -1.110223e-16
## YearBuilt 0.000000e+00 1.000000e+00
Conduct LU decomposition on the matrix.
LU_decomp <- lu.decomposition(corr_precision)
LU_decomp
## $L
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0
## [2,] 1.387779e-16 1.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0
## [3,] 6.938894e-17 4.579670e-16 1.000000e+00 0.000000e+00 0.000000e+00 0
## [4,] 0.000000e+00 2.775558e-16 -5.007418e-32 1.000000e+00 0.000000e+00 0
## [5,] 2.220446e-16 1.110223e-16 -1.387779e-16 -3.120007e-32 1.000000e+00 0
## [6,] 0.000000e+00 0.000000e+00 -5.551115e-17 2.220446e-16 -1.110223e-16 1
##
## $U
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 1.665335e-16 5.551115e-17 5.551115e-17 0.000000e+00 0.000000e+00
## [2,] 0 1.000000e+00 1.804112e-16 8.326673e-17 -8.326673e-17 -5.551115e-17
## [3,] 0 0.000000e+00 1.000000e+00 -6.938894e-17 2.775558e-17 2.775558e-17
## [4,] 0 0.000000e+00 0.000000e+00 1.000000e+00 -1.665335e-16 1.540744e-32
## [5,] 0 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00 -1.110223e-16
## [6,] 0 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00
Many times, it makes sense to fit a closed form distribution to data. Select a variable in the Kaggle.com training dataset that is skewed to the right, shift it so that the minimum value is absolutely above zero if necessary.
Wood deck is right skewed, with a minimum already at 0.
hist(house_train$WoodDeckSF, breaks = 30)
Then load the MASS package and run fitdistr to fit an exponential probability density function. (See https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/fitdistr.html ).
deck_exp <- fitdistr(house_train$WoodDeckSF, densfun = "exponential")
deck_exp
## rate
## 0.0106106965
## (0.0002776946)
Find the optimal value of \(\lambda\) for this distribution,
deck_lambda <- deck_exp$estimate
opt_val <- 1/deck_lambda
opt_val
## rate
## 94.24452
and then take 1000 samples from this exponential distribution using this value (e.g., rexp(1000, \(\lambda\)).
deck_samples <- rexp(1000, deck_lambda)
Plot a histogram and compare it with a histogram of your original variable.
par(mfrow = c(1, 2))
hist(deck_samples, breaks = 30, col="lightgreen", main = "Exponential - Wood Decks")
hist(house_train$WoodDeckSF, breaks = 30, xlab = "Wood Decks", col="lightblue", main = "Original - Wood Decks")
Using the exponential pdf, find the 5th and 95th percentiles using the cumulative distribution function (CDF).
qexp(c(0.05, 0.95), rate = deck_lambda)
## [1] 4.834112 282.331352
Also generate a 95% confidence interval from the empirical data, assuming normality.
qnorm(c(0.025, 0.975), mean=mean(house_train$WoodDeckSF), sd=sd(house_train$WoodDeckSF))
## [1] -151.415 339.904
Finally, provide the empirical 5th percentile and 95th percentile of the data. Discuss.
quantile(house_train$WoodDeckSF, c(0.05, 0.95))
## 5% 95%
## 0 335
The side-by-side histograms show visually that the original data was much less smoothed and gradual than the exponential distribution. The empirical 5th and 95th percentiles are considerably different (0 and 335) than the normalized confidence intervals (-151.4 and 339.9), possibly because there are so many 0 values in the data for Wood Decks. Even though the Wood Decks variable is not normally distributed, the empirical values are within the 95% confidence interval.
Build some type of multiple regression model and submit your model to the competition board. Provide your complete model summary and results with analysis. Report your Kaggle.com user name and score.
train_price_lm <- lm(SalePrice ~ GrLivArea + TotRmsAbvGrd + GarageCars + FullBath + YearBuilt, data = house_train)
summary(train_price_lm)
##
## Call:
## lm(formula = SalePrice ~ GrLivArea + TotRmsAbvGrd + GarageCars +
## FullBath + YearBuilt, data = house_train)
##
## Residuals:
## Min 1Q Median 3Q Max
## -425832 -24082 -3316 18898 308703
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.532e+06 9.775e+04 -15.676 < 2e-16 ***
## GrLivArea 9.518e+01 4.338e+00 21.939 < 2e-16 ***
## TotRmsAbvGrd -3.618e+03 1.295e+03 -2.795 0.00526 **
## GarageCars 2.471e+04 2.055e+03 12.021 < 2e-16 ***
## FullBath -6.469e+03 3.086e+03 -2.096 0.03627 *
## YearBuilt 7.909e+02 5.039e+01 15.697 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 44480 on 1454 degrees of freedom
## Multiple R-squared: 0.6875, Adjusted R-squared: 0.6865
## F-statistic: 639.8 on 5 and 1454 DF, p-value: < 2.2e-16
We see that all p-values for the 5 independent variables are < 0.05, and the R-squared is 0.6865, so this is a good model.
But could it be better? Perhaps. If we could find independent variables that perform better than the # of rooms and the # of full baths, the model may improve.
Let’s try Lot Area and Overall Quality of the building materials.
train_price_lm2 <- lm(SalePrice ~ GrLivArea + LotArea + GarageCars + OverallQual + YearBuilt, data = house_train)
summary(train_price_lm2)
##
## Call:
## lm(formula = SalePrice ~ GrLivArea + LotArea + GarageCars + OverallQual +
## YearBuilt, data = house_train)
##
## Residuals:
## Min 1Q Median 3Q Max
## -389546 -21413 -2184 17207 300512
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.179e+05 8.554e+04 -9.561 < 2e-16 ***
## GrLivArea 5.194e+01 2.612e+00 19.882 < 2e-16 ***
## LotArea 8.461e-01 1.065e-01 7.945 3.85e-15 ***
## GarageCars 1.492e+04 1.853e+03 8.049 1.71e-15 ***
## OverallQual 2.355e+04 1.153e+03 20.426 < 2e-16 ***
## YearBuilt 3.760e+02 4.494e+01 8.368 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 38960 on 1454 degrees of freedom
## Multiple R-squared: 0.7603, Adjusted R-squared: 0.7595
## F-statistic: 922.6 on 5 and 1454 DF, p-value: < 2.2e-16
These substitutions appear to be better fits and have improved the model for an adjusted R-squared of 0.7595, which is an improvement of 0.0730 in explaining the data.
This final model shows that 75.95% of the variance in sale price can be explained using the five independent variables identified in the model.
This results in a final model of: \(SalesPrice= 5.194e+01 * GrLivArea + 8.461e-01 * LotArea + 1.492e+04 * GarageCars + 2.355e+04 * OverallQual + 3.760e+02 * YearBuilt\)
Let’s check some residuals and the QQ plot to see if the basic assumptions for linear regression have been met.
plot(fitted(train_price_lm2), resid(train_price_lm2))
The residuals appear to be non-linear, almost slightly parabolic, with a much greater deal of variation as the prce increases.
qqnorm(resid(train_price_lm2))
qqline(resid(train_price_lm2), col = "red")
The QQ plot confirms that the lower and mid-range priced homes follow a linear pattern, but the upper range homes veer away from a good fit.
So let’s test the model we have build against the test data set.
test_price <- house_test %>%
dplyr::select(GrLivArea, LotArea, GarageCars, OverallQual, YearBuilt, Id)
prediction <- predict(train_price_lm2, newdata = test_price, type = "response")
prediction <- as.data.frame(prediction)
pred_prices <- data.frame(Id = test_price$Id, SalePrice = prediction$prediction)
pred_prices$SalePrice[is.na(pred_prices$SalePrice)] <- "0"
write_csv(pred_prices, file = "dbarley_price_prediction.csv")
My Kaggle user name is Douglas Barley, and the resulting score on Kaggle.com from this model is 0.55808.
Kaggle Submission Results.