In this example, the model correctly predicted for Tested Positive is 120 times and incorrectly predicted it 15 times. The model correctly predicted for Tested Negative is 50 times and incorrectly predicted it 10 times.
Description
Format
A data frame with 71 observations on the following 2 variables.
weight = a numeric variable giving the chick weight.
feed = a factor giving the feed type.
Details - Newly hatched chicks were randomly allocated into six groups, and each group was given a different feed supplement. Their weights in grams after six weeks are given along with feed types.
Dataset of Chicken Weight by Feed Type(first 6 data)
## weight feed
## 1 179 horsebean
## 2 160 horsebean
## 3 136 horsebean
## 4 227 horsebean
## 5 217 horsebean
## 6 168 horsebean
-Categorical Variables
##
## casein horsebean linseed meatmeal soybean sunflower
## 12 10 12 11 14 12
## chickwts$feed: casein
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 216.0 277.2 342.0 323.6 370.8 404.0
## ------------------------------------------------------------
## chickwts$feed: horsebean
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 108.0 137.0 151.5 160.2 176.2 227.0
## ------------------------------------------------------------
## chickwts$feed: linseed
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 141.0 178.0 221.0 218.8 257.8 309.0
## ------------------------------------------------------------
## chickwts$feed: meatmeal
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 153.0 249.5 263.0 276.9 320.0 380.0
## ------------------------------------------------------------
## chickwts$feed: soybean
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 158.0 206.8 248.0 246.4 270.0 329.0
## ------------------------------------------------------------
## chickwts$feed: sunflower
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 226.0 312.8 328.0 328.9 340.2 423.0
## chickwts$feed: casein
## [1] 323.5833
## ------------------------------------------------------------
## chickwts$feed: horsebean
## [1] 160.2
## ------------------------------------------------------------
## chickwts$feed: linseed
## [1] 218.75
## ------------------------------------------------------------
## chickwts$feed: meatmeal
## [1] 276.9091
## ------------------------------------------------------------
## chickwts$feed: soybean
## [1] 246.4286
## ------------------------------------------------------------
## chickwts$feed: sunflower
## [1] 328.9167
## Year Month Palestinians.Killed Israelis.Killed
## 1 2000 DECEMBER 51 8
## 2 2000 NOVEMBER 112 22
## 3 2000 OCTOBER 104 10
## 4 2000 SEPTEMBER 16 1
## 5 2001 DECEMBER 67 36
## 6 2001 NOVEMBER 39 14
## 7 2001 OCTOBER 89 14
## 8 2001 SEPTEMBER 59 13
## 9 2001 AUGUST 37 26
## 10 2001 JULY 32 10
Palestine1 <- dplyr :: rename(Palestine, "Palestinians_Killed" = Palestinians.Killed, "Israelis_Killed" = Israelis.Killed)
dplyr::filter(Palestine1, as.numeric(Palestinians_Killed) > 100)
## Year Month Palestinians_Killed Israelis_Killed
## 1 2000 NOVEMBER 112 22
## 2 2000 OCTOBER 104 10
Palestine2 <- dplyr::mutate(Palestine1, Palestinian_Injured = as.numeric(Palestinians_Killed)*2)
dplyr::bind_cols(Palestine2, PalestineCombine)
## Year Month Palestinians_Killed Israelis_Killed Palestinian_Injured
## 1 2000 DECEMBER 51 8 102
## 2 2000 NOVEMBER 112 22 224
## 3 2000 OCTOBER 104 10 208
## 4 2000 SEPTEMBER 16 1 32
## 5 2001 DECEMBER 67 36 134
## 6 2001 NOVEMBER 39 14 78
## 7 2001 OCTOBER 89 14 178
## 8 2001 SEPTEMBER 59 13 118
## 9 2001 AUGUST 37 26 74
## 10 2001 JULY 32 10 64
## Israelis.Injuries
## 1 n/a
## 2 n/a
## 3 n/a
## 4 n/a
## 5 n/a
## 6 n/a
## 7 n/a
## 8 n/a
## 9 n/a
## 10 n/a