dados_leniency = read_csv(here::here("data/leniency.csv"))
-- Column specification ------------------------------------------------------------------
cols(
smile = col_character(),
leniency = col_double(),
with_smile = col_character()
)
glimpse(dados_leniency)
Rows: 136
Columns: 3
$ smile <chr> "false smile", "false smile", "false smile", "false smile", "false sm~
$ leniency <dbl> 2.5, 5.5, 6.5, 3.5, 3.0, 3.5, 6.0, 5.0, 4.0, 4.5, 5.0, 5.5, 3.5, 6.0,~
$ with_smile <chr> "yes", "yes", "yes", "yes", "yes", "yes", "yes", "yes", "yes", "yes",~
dados_leniency %>%
skimr::skim()
-- Data Summary ------------------------
Values
Name Piped data
Number of rows 136
Number of columns 3
_______________________
Column type frequency:
character 2
numeric 1
________________________
Group variables None
-- Variable type: character --------------------------------------------------------------
# A tibble: 2 x 8
skim_variable n_missing complete_rate min max empty n_unique whitespace
* <chr> <int> <dbl> <int> <int> <int> <int> <int>
1 smile 0 1 10 18 0 4 0
2 with_smile 0 1 2 3 0 2 0
-- Variable type: numeric ----------------------------------------------------------------
# A tibble: 1 x 11
skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
* <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 leniency 0 1 4.83 1.67 2 3.5 4.5 6 9 ▅▇▆▃▂
dados_leniency %>%
drop_na() %>%
ggplot(aes(x = leniency)) +
facet_wrap(~ smile, ncol = 1) +
geom_histogram(binwidth = 0.4, boundary = 0, color = "darkblue", fill = "steelblue") +
geom_rug() +
theme(text=element_text(size=16, family="serif")) +
labs(y = "", x = "leniency")
dados_leniency %>%
drop_na() %>%
ggplot(aes(x = leniency)) +
facet_wrap(~ smile, ncol = 1) +
geom_density(binwidth = 0.4, boundary = 0, color = "darkblue", fill = "steelblue") +
geom_rug() +
theme(text=element_text(size=16, family="serif")) +
labs(y = "", x = "leniency")
Ignoring unknown parameters: binwidth, boundary
dados_leniency %>%
group_by(smile) %>%
summarise(media = mean(leniency))
dados_smile = dados_leniency %>%
filter(with_smile == "yes")
dados_no_smile = dados_leniency %>%
filter(with_smile == "no")
s <- function(d, i) {
sumarizado = d %>%
slice(i) %>%
summarise(media_smile = mean(leniency))
sumarizado %>%
pull(media_smile)
}
s(dados_smile, 1:(nrow(dados_smile))) # theta_chapeu
[1] 5.063725
booted <- boot(data = dados_smile,
statistic = s,
R = 2000)
ci_smile = tidy(booted,
conf.level = .95,
conf.method = "basic",
conf.int = TRUE)
ci_smile
ci_smile %>%
ggplot(aes(
ymin = conf.low,
y = statistic,
ymax = conf.high,
x = "With Smile"
)) +
geom_linerange() +
geom_point(color = "coral", size = 2) +
scale_y_continuous(limits = c(0, 10)) +
labs(x = "", y = "Laninency para fotos com sorriso") +
coord_flip()
s <- function(d, i) {
sumarizado = d %>%
slice(i) %>%
summarise(media_no_smile = mean(leniency))
sumarizado %>%
pull(media_no_smile)
}
s(dados_no_smile, 1:(nrow(dados_no_smile))) # theta_chapeu
[1] 4.117647
booted <- boot(data = dados_no_smile,
statistic = s,
R = 2000)
ci_no_smile = tidy(booted,
conf.level = .95,
conf.method = "basic",
conf.int = TRUE)
ci_no_smile
ci_no_smile %>%
ggplot(aes(
ymin = conf.low,
y = statistic,
ymax = conf.high,
x = "No smile"
)) +
geom_linerange() +
geom_point(color = "coral", size = 2) +
scale_y_continuous(limits = c(0, 10)) +
labs(x = "", y = "Laninency para fotos sem sorriso") +
coord_flip()
ics_smile_nosmile = rbind(ci_smile, ci_no_smile)
ics_smile_nosmile$smile = c("with_smile", "no_smile")
ics_smile_nosmile
ics_smile_nosmile %>%
ggplot(aes(
ymin = conf.low,
y = statistic,
ymax = conf.high,
x = reorder(smile, statistic)
)) +
geom_linerange() +
geom_point(color = "coral", size = 3) +
scale_y_continuous(limits = c(0, 10)) +
labs(x = "", y = "Leniency") +
coord_flip()
Diferença
comparacao = dados_leniency
theta <- function(d, i) {
agrupado = d %>%
slice(i) %>%
group_by(with_smile) %>%
summarise(media = mean(leniency))
b = agrupado %>% filter(with_smile == "yes") %>% pull(media)
l = agrupado %>% filter(with_smile == "no") %>% pull(media)
l - b
}
theta(comparacao, i = 1:NROW(comparacao))
[1] -0.9460784
ci_comp_smiles = boot(data = comparacao,
statistic = theta,
R = 2000) %>%
tidy(conf.level = .95,
conf.method = "bca",
conf.int = TRUE)
ci_comp_smiles
ci_comp_smiles %>%
ggplot(aes(
ymin = conf.low,
y = statistic,
ymax = conf.high,
x = "no smile - with smile"
)) +
geom_linerange() +
geom_point(color = "coral", size = 3) +
scale_y_continuous(limits = c(-3, 3)) +
labs(x = "", y = "Leniency") +
coord_flip()
miserable_smile = dados_leniency %>%
filter(smile == "miserable smile")
felt_smile = dados_leniency %>%
filter(smile == "felt smile")
false_smile = dados_leniency %>%
filter(smile == "false smile")
miserable_smile
s <- function(d, i) {
sumarizado = d %>%
slice(i) %>%
summarise(media = mean(leniency))
sumarizado %>%
pull(media)
}
s(miserable_smile, 1:(nrow(miserable_smile))) # theta_chapeu
[1] 4.911765
booted <- boot(data = miserable_smile,
statistic = s,
R = 2000)
ci_miserable_smile = tidy(booted,
conf.level = .95,
conf.method = "basic",
conf.int = TRUE)
ci_miserable_smile
s <- function(d, i) {
sumarizado = d %>%
slice(i) %>%
summarise(media = mean(leniency))
sumarizado %>%
pull(media)
}
s(felt_smile, 1:(nrow(felt_smile))) # theta_chapeu
[1] 4.911765
booted <- boot(data = felt_smile,
statistic = s,
R = 2000)
ci_felt_smile = tidy(booted,
conf.level = .95,
conf.method = "basic",
conf.int = TRUE)
ci_felt_smile
s <- function(d, i) {
sumarizado = d %>%
slice(i) %>%
summarise(media = mean(leniency))
sumarizado %>%
pull(media)
}
s(false_smile, 1:(nrow(false_smile))) # theta_chapeu
[1] 5.367647
booted <- boot(data = false_smile,
statistic = s,
R = 2000)
ci_false_smile = tidy(booted,
conf.level = .95,
conf.method = "basic",
conf.int = TRUE)
ci_false_smile
ics_all_smile = rbind(ci_no_smile, ci_false_smile, ci_felt_smile, ci_miserable_smile)
ics_all_smile$smile = c("no smile", "false smile", "felt smile", "miserable smile")
ics_all_smile
ics_all_smile %>%
ggplot(aes(
ymin = conf.low,
y = statistic,
ymax = conf.high,
x = reorder(smile, statistic)
)) +
geom_linerange() +
geom_point(color = "coral", size = 3) +
scale_y_continuous(limits = c(2, 7.5)) +
labs(x = "", y = "Leniency") +
coord_flip()
No smile - False Smile
Diferença
comparacao_false_smile = dados_leniency
theta <- function(d, i) {
agrupado = d %>%
slice(i) %>%
group_by(smile) %>%
summarise(media = mean(leniency))
b = agrupado %>% filter(smile == "false smile") %>% pull(media)
l = agrupado %>% filter(smile == "no smile (control)") %>% pull(media)
l - b
}
theta(comparacao_false_smile, i = 1:NROW(comparacao_false_smile))
ci_comp_false_smile = boot(data = comparacao_false_smile,
statistic = theta,
R = 2000) %>%
tidy(conf.level = .95,
conf.method = "bca",
conf.int = TRUE)
ci_comp_false_smile
No smile - Felt Smile
Diferença
comparacao_felt_smile = dados_leniency
theta <- function(d, i) {
agrupado = d %>%
slice(i) %>%
group_by(smile) %>%
summarise(media = mean(leniency))
b = agrupado %>% filter(smile == "felt smile") %>% pull(media)
l = agrupado %>% filter(smile == "no smile (control)") %>% pull(media)
l - b
}
theta(comparacao_felt_smile, i = 1:NROW(comparacao_felt_smile))
ci_comp_felt_smile = boot(data = comparacao_felt_smile,
statistic = theta,
R = 2000) %>%
tidy(conf.level = .95,
conf.method = "bca",
conf.int = TRUE)
ci_comp_felt_smile
No smile - Miserable Smile
Diferença
comparacao_miserable_smile = dados_leniency
theta <- function(d, i) {
agrupado = d %>%
slice(i) %>%
group_by(smile) %>%
summarise(media = mean(leniency))
b = agrupado %>% filter(smile == "miserable smile") %>% pull(media)
l = agrupado %>% filter(smile == "no smile (control)") %>% pull(media)
l - b
}
theta(comparacao_miserable_smile, i = 1:NROW(comparacao_miserable_smile))
ci_comp_miserable_smile = boot(data = comparacao_miserable_smile,
statistic = theta,
R = 2000) %>%
tidy(conf.level = .95,
conf.method = "bca",
conf.int = TRUE)
ci_comp_miserable_smile
ics_diff_smile = rbind(ci_comp_false_smile, ci_comp_felt_smile, ci_comp_miserable_smile)
ics_diff_smile$diff = c("no smile - false smile", "no smile - felt smile", "no smile - miserable smile")
ics_diff_smile
ics_diff_smile %>%
ggplot(aes(
ymin = conf.low,
y = statistic,
ymax = conf.high,
x = reorder(diff, statistic)
)) +
geom_linerange() +
geom_point(color = "coral", size = 3) +
scale_y_continuous(limits = c(-3, 3)) +
labs(x = "", y = "Leniency") +
coord_flip()
Difference entre False smile e Felt smile No smile - Felt Smile
comparacao_felt_miseralbe = dados_leniency
theta <- function(d, i) {
agrupado = d %>%
slice(i) %>%
group_by(smile) %>%
summarise(media = mean(leniency))
b = agrupado %>% filter(smile == "felt smile") %>% pull(media)
l = agrupado %>% filter(smile == "miserable smile") %>% pull(media)
l - b
}
theta(comparacao_felt_miseralbe, i = 1:NROW(comparacao_felt_miseralbe))
ci_comparacao_felt_miseralbe = boot(data = comparacao_felt_miseralbe,
statistic = theta,
R = 2000) %>%
tidy(conf.level = .95,
conf.method = "bca",
conf.int = TRUE)
ci_comparacao_felt_miseralbe
ci_comparacao_felt_miseralbe%>%
ggplot(aes(
ymin = conf.low,
y = statistic,
ymax = conf.high,
x = "Miserable - Felt"
)) +
geom_linerange() +
geom_point(color = "coral", size = 2) +
scale_y_continuous(limits = c(-2, 2)) +
labs(x = "", y = "Leniency") +
coord_flip()