library("survival")
Warning messages:
1: In readChar(file, size, TRUE) : truncating string with embedded nuls
2: In readChar(file, size, TRUE) : truncating string with embedded nuls

#datos

df <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vQ-oM6VFHCBg56GKR3hloRLSRpamlDwi3nZsGQYVD3-Pz-twI7tw-ixdXqfq1eTXw/pub?gid=1757501195&single=true&output=csv")
Error in read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vQ-oM6VFHCBg56GKR3hloRLSRpamlDwi3nZsGQYVD3-Pz-twI7tw-ixdXqfq1eTXw/pub?gid=1757501195&single=true&output=csv") : 
  could not find function "read_csv"

#objeto kaplan

melanom.surv <- Surv(df$Seguimiento.M., df$status==1)
Error in Surv(df$Seguimiento.M., df$status == 1) : 
  could not find function "Surv"

#summary

summary(kaplan.km)
Call: survfit(formula = kaplan ~ 1, data = df, type = "kaplan-meier")

 time n.risk n.event survival std.err lower 95% CI upper 95% CI
    1    115       1    0.991 0.00866        0.974        1.000
    4    114       1    0.983 0.01219        0.959        1.000
    8    108       2    0.964 0.01748        0.931        0.999
   12     99       2    0.945 0.02189        0.903        0.989

#curva supervivencia

#riesgo acumulado

#Estimacion de la supervivencia (ESTIMACIÓN DE LA MEDIA, MEDIANA Y PERCENTILES DE LOS TIEMPOS DE SUPERVIVENCIA)

print(kaplan.km, print.rmean = TRUE)
Call: survfit(formula = kaplan ~ 1, data = df, type = "kaplan-meier")

         n     events     *rmean *se(rmean)     median    0.95LCL    0.95UCL 
    115.00       6.00     138.38       3.03         NA         NA         NA 
    * restricted mean with upper limit =  146 
LS0tCnRpdGxlOiAiQW5hbGlzaXMgZGUgc3VwZXJ2aXZlbmNpYSIKb3V0cHV0OiBodG1sX25vdGVib29rCiNsb3MgcGFja2FnZXMKLS0tCmBgYHtyfQpsaWJyYXJ5KCJzdXJ2aXZhbCIpCmxpYnJhcnkoInN1cnZtaW5lciIpCmxpYnJhcnkoInRpZHl2ZXJzZSIpCmBgYAojZGF0b3MKYGBge3J9CmRmIDwtIHJlYWQuY3N2KCJodHRwczovL2RvY3MuZ29vZ2xlLmNvbS9zcHJlYWRzaGVldHMvZC9lLzJQQUNYLTF2US1vTTZWRkhDQmc1NkdLUjNobG9STFNScGFtbER3aTNuWnNHUVlWRDMtUHotdHdJN3R3LWl4ZFhxZnExZVRYdy9wdWI/Z2lkPTE3NTc1MDExOTUmc2luZ2xlPXRydWUmb3V0cHV0PWNzdiIpCmBgYAojb2JqZXRvIGthcGxhbiAKYGBge3J9CmthcGxhbiA8LSBTdXJ2KGRmJFNlZ3VpbWllbnRvLk0uLCBkZiRzdGF0dXM9PTEpCmthcGxhbi5rbSA8LSBzdXJ2Zml0KGthcGxhbiB+IDEsIGRhdGEgPSBkZiwgdHlwZSA9ICJrYXBsYW4tbWVpZXIiKQpgYGAKI3N1bW1hcnkKYGBge3J9CnN1bW1hcnkoa2FwbGFuLmttKQpgYGAKI2N1cnZhIHN1cGVydml2ZW5jaWEgCmBgYHtyfQpnZ3N1cnZwbG90KGZpdCA9IGthcGxhbi5rbSwgZGF0YSA9IGRmLCBjb25mLmludCA9IFQsIHRpdGxlID0gIkN1cnZhIGRlIFN1cGVydml2ZW5jaWEiLCAgeGxhYiA9ICJTZWd1aW1pZW50byAobWVzZXMpIiwgeWxhYiA9ICJTb2JyZXZpZGEgbGlicmUgZGUgZmFsbGEgKCUpIiwgbGVnZW5kLnRpdGxlID0gIkVzdGltYWNpw7NuIiwgCiAgICAgICAgICAgbGVnZW5kLmxhYnMgPSAiS2FwbGFuLU1laWVyIikgCmBgYAojcmllc2dvIGFjdW11bGFkbwpgYGB7cn0KcGxvdChrYXBsYW4ua20sIGZ1biA9ICJjdW1oYXoiLCBjb25mLmludCA9IEYsIG1haW4gPSAiUmllc2dvIEFjdW11bGFkbyIsIGNvbCA9IDE6MiwgCiAgICB4bGFiID0gIlRpZW1wbyAoTWVzZXMpIiwgeWxhYiA9ICJSaWVzZ28gQWN1bXVsYWRvIikKYGBgCiNFc3RpbWFjaW9uIGRlIGxhIHN1cGVydml2ZW5jaWEgKEVTVElNQUNJw5NOIERFIExBIE1FRElBLCBNRURJQU5BIFkgUEVSQ0VOVElMRVMgREUgTE9TIFRJRU1QT1MgREUgU1VQRVJWSVZFTkNJQSkKYGBge3J9CnByaW50KGthcGxhbi5rbSwgcHJpbnQucm1lYW4gPSBUUlVFKQpgYGAKCg==