Using R, generate a random variable X that has 10,000 random uniform numbers from 1 to N, where N can be any number of your choosing greater than or equal to 6. Then generate a random variable Y that has 10,000 random normal numbers with a mean of \(\mu=\sigma=(N+1)/2\)
set.seed(10)
N <- 25 #i am choosing N as 25
n <- 10000
X <- runif(n, 1, N) #random uniform numbers from 1 to N(here 25)
m <- (N+1)/2
Y = rnorm(n, mean=m, sd=m) #random normal numbers
df <- data.frame(x = X, y = Y)
head(df)
Calculate as a minimum the below probabilities a through c. Assume the small letter “x” is estimated as the median of the X variable, and the small letter “y” is estimated as the 1st quartile of the Y variable. Interpret the meaning of all probabilities.
x <- median(X)
y <- quantile(Y, 0.25)
print(paste("median of the X variable",round(x,4),"1st quartile of the Y variable",round(y,4)))
## [1] "median of the X variable 12.8626 1st quartile of the Y variable 4.2838"
#a=X>x
#b=X>y
#P(a|b)=P(ab)/P(b)
b<- length(which(X > y))
ab <- length(which(X > x & X > y))
P <- ab/b
print(paste("The probability is: ",round(P,4)))
## [1] "The probability is: 0.5802"
P = length(which(X > x & Y > y))/n
print(paste("The probability is: ",round(P,4)))
## [1] "The probability is: 0.3743"
#a=X<x
#b=X>y
#P(a|b)=P(ab)/P(b)
b <- length(which(X > y))
ab <- length(which(X < x & X > y))
P <- ab/b
print(paste("The probability is: ",round(P,4)))
## [1] "The probability is: 0.4198"
i <- length(which(X < x & Y < y))
j <- length(which(X > x & Y < y))
k <- length(which(X < x & Y > y))
l <- length(which(X > x & Y > y))
tab_df <- matrix(c(i,j,k,l),nrow=2)
rownames(tab_df) <- c('X < x','X > x')
colnames(tab_df) <- c('Y < y','Y > y')
tab_df <- as.table(tab_df)
tab_df
## Y < y Y > y
## X < x 1243 3757
## X > x 1257 3743
# Marginal
m1 <- margin.table(tab_df,1)[2] / margin.table(tab_df)
m2 <- margin.table(tab_df,2)[2] / margin.table(tab_df)
print(paste("The probability is: ",m1 %*% m2)) #matrix multiplication
## [1] "The probability is: 0.375"
# Joint
joint = tab_df[2,2] / margin.table(tab_df)
print(paste("The probability is: ",joint))
## [1] "The probability is: 0.3743"
The marginal and joint probabilities are almost same that could indicate independancy.
df_f_c <- table(X > x, Y > y)
df_f_c
##
## FALSE TRUE
## FALSE 1243 3757
## TRUE 1257 3743
fisher.test(df_f_c) #Fisher’s Exact Test
##
## Fisher's Exact Test for Count Data
##
## data: df_f_c
## p-value = 0.764
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.898962 1.079670
## sample estimates:
## odds ratio
## 0.9851765
chisq.test(df_f_c) #Chi Square Test
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: df_f_c
## X-squared = 0.090133, df = 1, p-value = 0.764
Chi Square Test is used for large datasets(it assumes that the size of the sample is large). Fisher’s Exact Test is used for small samples(when used for large samples the process is very tedious)
Fisher’s Exact Test and the Chi Square Test have large p value(>0.05) which indicates that the independence is true.
You are to register for Kaggle.com (free) and compete in the House Prices: Advanced Regression Techniques competition. https://www.kaggle.com/c/house-prices-advanced-regression-techniques . I want you to do the following.
Provide univariate descriptive statistics and appropriate plots for the training data set. Provide a scatterplot matrix for at least two of the independent variables and the dependent variable. Derive a correlation matrix for any three quantitative variables in the dataset. Test the hypotheses that the correlations between each pairwise set of variables is 0 and provide an 80% confidence interval. Discuss the meaning of your analysis. Would you be worried about familywise error? Why or why not?
t <- read.csv("https://raw.githubusercontent.com/irene908/DATA605/main/train.csv") #train data
head(t)
summary(t)
## Id MSSubClass MSZoning LotFrontage
## Min. : 1.0 Min. : 20.0 Length:1460 Min. : 21.00
## 1st Qu.: 365.8 1st Qu.: 20.0 Class :character 1st Qu.: 59.00
## Median : 730.5 Median : 50.0 Mode :character Median : 69.00
## Mean : 730.5 Mean : 56.9 Mean : 70.05
## 3rd Qu.:1095.2 3rd Qu.: 70.0 3rd Qu.: 80.00
## Max. :1460.0 Max. :190.0 Max. :313.00
## NA's :259
## LotArea Street Alley LotShape
## Min. : 1300 Length:1460 Length:1460 Length:1460
## 1st Qu.: 7554 Class :character Class :character Class :character
## Median : 9478 Mode :character Mode :character Mode :character
## Mean : 10517
## 3rd Qu.: 11602
## Max. :215245
##
## LandContour Utilities LotConfig LandSlope
## Length:1460 Length:1460 Length:1460 Length:1460
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## Neighborhood Condition1 Condition2 BldgType
## Length:1460 Length:1460 Length:1460 Length:1460
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## HouseStyle OverallQual OverallCond YearBuilt
## Length:1460 Min. : 1.000 Min. :1.000 Min. :1872
## Class :character 1st Qu.: 5.000 1st Qu.:5.000 1st Qu.:1954
## Mode :character Median : 6.000 Median :5.000 Median :1973
## Mean : 6.099 Mean :5.575 Mean :1971
## 3rd Qu.: 7.000 3rd Qu.:6.000 3rd Qu.:2000
## Max. :10.000 Max. :9.000 Max. :2010
##
## YearRemodAdd RoofStyle RoofMatl Exterior1st
## Min. :1950 Length:1460 Length:1460 Length:1460
## 1st Qu.:1967 Class :character Class :character Class :character
## Median :1994 Mode :character Mode :character Mode :character
## Mean :1985
## 3rd Qu.:2004
## Max. :2010
##
## Exterior2nd MasVnrType MasVnrArea ExterQual
## Length:1460 Length:1460 Min. : 0.0 Length:1460
## Class :character Class :character 1st Qu.: 0.0 Class :character
## Mode :character Mode :character Median : 0.0 Mode :character
## Mean : 103.7
## 3rd Qu.: 166.0
## Max. :1600.0
## NA's :8
## ExterCond Foundation BsmtQual BsmtCond
## Length:1460 Length:1460 Length:1460 Length:1460
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## BsmtExposure BsmtFinType1 BsmtFinSF1 BsmtFinType2
## Length:1460 Length:1460 Min. : 0.0 Length:1460
## Class :character Class :character 1st Qu.: 0.0 Class :character
## Mode :character Mode :character Median : 383.5 Mode :character
## Mean : 443.6
## 3rd Qu.: 712.2
## Max. :5644.0
##
## BsmtFinSF2 BsmtUnfSF TotalBsmtSF Heating
## Min. : 0.00 Min. : 0.0 Min. : 0.0 Length:1460
## 1st Qu.: 0.00 1st Qu.: 223.0 1st Qu.: 795.8 Class :character
## Median : 0.00 Median : 477.5 Median : 991.5 Mode :character
## Mean : 46.55 Mean : 567.2 Mean :1057.4
## 3rd Qu.: 0.00 3rd Qu.: 808.0 3rd Qu.:1298.2
## Max. :1474.00 Max. :2336.0 Max. :6110.0
##
## HeatingQC CentralAir Electrical X1stFlrSF
## Length:1460 Length:1460 Length:1460 Min. : 334
## Class :character Class :character Class :character 1st Qu.: 882
## Mode :character Mode :character Mode :character Median :1087
## Mean :1163
## 3rd Qu.:1391
## Max. :4692
##
## X2ndFlrSF LowQualFinSF GrLivArea BsmtFullBath
## Min. : 0 Min. : 0.000 Min. : 334 Min. :0.0000
## 1st Qu.: 0 1st Qu.: 0.000 1st Qu.:1130 1st Qu.:0.0000
## Median : 0 Median : 0.000 Median :1464 Median :0.0000
## Mean : 347 Mean : 5.845 Mean :1515 Mean :0.4253
## 3rd Qu.: 728 3rd Qu.: 0.000 3rd Qu.:1777 3rd Qu.:1.0000
## Max. :2065 Max. :572.000 Max. :5642 Max. :3.0000
##
## BsmtHalfBath FullBath HalfBath BedroomAbvGr
## Min. :0.00000 Min. :0.000 Min. :0.0000 Min. :0.000
## 1st Qu.:0.00000 1st Qu.:1.000 1st Qu.:0.0000 1st Qu.:2.000
## Median :0.00000 Median :2.000 Median :0.0000 Median :3.000
## Mean :0.05753 Mean :1.565 Mean :0.3829 Mean :2.866
## 3rd Qu.:0.00000 3rd Qu.:2.000 3rd Qu.:1.0000 3rd Qu.:3.000
## Max. :2.00000 Max. :3.000 Max. :2.0000 Max. :8.000
##
## KitchenAbvGr KitchenQual TotRmsAbvGrd Functional
## Min. :0.000 Length:1460 Min. : 2.000 Length:1460
## 1st Qu.:1.000 Class :character 1st Qu.: 5.000 Class :character
## Median :1.000 Mode :character Median : 6.000 Mode :character
## Mean :1.047 Mean : 6.518
## 3rd Qu.:1.000 3rd Qu.: 7.000
## Max. :3.000 Max. :14.000
##
## Fireplaces FireplaceQu GarageType GarageYrBlt
## Min. :0.000 Length:1460 Length:1460 Min. :1900
## 1st Qu.:0.000 Class :character Class :character 1st Qu.:1961
## Median :1.000 Mode :character Mode :character Median :1980
## Mean :0.613 Mean :1979
## 3rd Qu.:1.000 3rd Qu.:2002
## Max. :3.000 Max. :2010
## NA's :81
## GarageFinish GarageCars GarageArea GarageQual
## Length:1460 Min. :0.000 Min. : 0.0 Length:1460
## Class :character 1st Qu.:1.000 1st Qu.: 334.5 Class :character
## Mode :character Median :2.000 Median : 480.0 Mode :character
## Mean :1.767 Mean : 473.0
## 3rd Qu.:2.000 3rd Qu.: 576.0
## Max. :4.000 Max. :1418.0
##
## GarageCond PavedDrive WoodDeckSF OpenPorchSF
## Length:1460 Length:1460 Min. : 0.00 Min. : 0.00
## Class :character Class :character 1st Qu.: 0.00 1st Qu.: 0.00
## Mode :character Mode :character Median : 0.00 Median : 25.00
## Mean : 94.24 Mean : 46.66
## 3rd Qu.:168.00 3rd Qu.: 68.00
## Max. :857.00 Max. :547.00
##
## EnclosedPorch X3SsnPorch ScreenPorch PoolArea
## Min. : 0.00 Min. : 0.00 Min. : 0.00 Min. : 0.000
## 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.00 1st Qu.: 0.000
## Median : 0.00 Median : 0.00 Median : 0.00 Median : 0.000
## Mean : 21.95 Mean : 3.41 Mean : 15.06 Mean : 2.759
## 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.00 3rd Qu.: 0.000
## Max. :552.00 Max. :508.00 Max. :480.00 Max. :738.000
##
## PoolQC Fence MiscFeature MiscVal
## Length:1460 Length:1460 Length:1460 Min. : 0.00
## Class :character Class :character Class :character 1st Qu.: 0.00
## Mode :character Mode :character Mode :character Median : 0.00
## Mean : 43.49
## 3rd Qu.: 0.00
## Max. :15500.00
##
## MoSold YrSold SaleType SaleCondition
## Min. : 1.000 Min. :2006 Length:1460 Length:1460
## 1st Qu.: 5.000 1st Qu.:2007 Class :character Class :character
## Median : 6.000 Median :2008 Mode :character Mode :character
## Mean : 6.322 Mean :2008
## 3rd Qu.: 8.000 3rd Qu.:2009
## Max. :12.000 Max. :2010
##
## SalePrice
## Min. : 34900
## 1st Qu.:129975
## Median :163000
## Mean :180921
## 3rd Qu.:214000
## Max. :755000
##
str(t)
## 'data.frame': 1460 obs. of 81 variables:
## $ Id : int 1 2 3 4 5 6 7 8 9 10 ...
## $ MSSubClass : int 60 20 60 70 60 50 20 60 50 190 ...
## $ MSZoning : chr "RL" "RL" "RL" "RL" ...
## $ LotFrontage : int 65 80 68 60 84 85 75 NA 51 50 ...
## $ LotArea : int 8450 9600 11250 9550 14260 14115 10084 10382 6120 7420 ...
## $ Street : chr "Pave" "Pave" "Pave" "Pave" ...
## $ Alley : chr NA NA NA NA ...
## $ LotShape : chr "Reg" "Reg" "IR1" "IR1" ...
## $ LandContour : chr "Lvl" "Lvl" "Lvl" "Lvl" ...
## $ Utilities : chr "AllPub" "AllPub" "AllPub" "AllPub" ...
## $ LotConfig : chr "Inside" "FR2" "Inside" "Corner" ...
## $ LandSlope : chr "Gtl" "Gtl" "Gtl" "Gtl" ...
## $ Neighborhood : chr "CollgCr" "Veenker" "CollgCr" "Crawfor" ...
## $ Condition1 : chr "Norm" "Feedr" "Norm" "Norm" ...
## $ Condition2 : chr "Norm" "Norm" "Norm" "Norm" ...
## $ BldgType : chr "1Fam" "1Fam" "1Fam" "1Fam" ...
## $ HouseStyle : chr "2Story" "1Story" "2Story" "2Story" ...
## $ OverallQual : int 7 6 7 7 8 5 8 7 7 5 ...
## $ OverallCond : int 5 8 5 5 5 5 5 6 5 6 ...
## $ YearBuilt : int 2003 1976 2001 1915 2000 1993 2004 1973 1931 1939 ...
## $ YearRemodAdd : int 2003 1976 2002 1970 2000 1995 2005 1973 1950 1950 ...
## $ RoofStyle : chr "Gable" "Gable" "Gable" "Gable" ...
## $ RoofMatl : chr "CompShg" "CompShg" "CompShg" "CompShg" ...
## $ Exterior1st : chr "VinylSd" "MetalSd" "VinylSd" "Wd Sdng" ...
## $ Exterior2nd : chr "VinylSd" "MetalSd" "VinylSd" "Wd Shng" ...
## $ MasVnrType : chr "BrkFace" "None" "BrkFace" "None" ...
## $ MasVnrArea : int 196 0 162 0 350 0 186 240 0 0 ...
## $ ExterQual : chr "Gd" "TA" "Gd" "TA" ...
## $ ExterCond : chr "TA" "TA" "TA" "TA" ...
## $ Foundation : chr "PConc" "CBlock" "PConc" "BrkTil" ...
## $ BsmtQual : chr "Gd" "Gd" "Gd" "TA" ...
## $ BsmtCond : chr "TA" "TA" "TA" "Gd" ...
## $ BsmtExposure : chr "No" "Gd" "Mn" "No" ...
## $ BsmtFinType1 : chr "GLQ" "ALQ" "GLQ" "ALQ" ...
## $ BsmtFinSF1 : int 706 978 486 216 655 732 1369 859 0 851 ...
## $ BsmtFinType2 : chr "Unf" "Unf" "Unf" "Unf" ...
## $ BsmtFinSF2 : int 0 0 0 0 0 0 0 32 0 0 ...
## $ BsmtUnfSF : int 150 284 434 540 490 64 317 216 952 140 ...
## $ TotalBsmtSF : int 856 1262 920 756 1145 796 1686 1107 952 991 ...
## $ Heating : chr "GasA" "GasA" "GasA" "GasA" ...
## $ HeatingQC : chr "Ex" "Ex" "Ex" "Gd" ...
## $ CentralAir : chr "Y" "Y" "Y" "Y" ...
## $ Electrical : chr "SBrkr" "SBrkr" "SBrkr" "SBrkr" ...
## $ X1stFlrSF : int 856 1262 920 961 1145 796 1694 1107 1022 1077 ...
## $ X2ndFlrSF : int 854 0 866 756 1053 566 0 983 752 0 ...
## $ LowQualFinSF : int 0 0 0 0 0 0 0 0 0 0 ...
## $ GrLivArea : int 1710 1262 1786 1717 2198 1362 1694 2090 1774 1077 ...
## $ BsmtFullBath : int 1 0 1 1 1 1 1 1 0 1 ...
## $ BsmtHalfBath : int 0 1 0 0 0 0 0 0 0 0 ...
## $ FullBath : int 2 2 2 1 2 1 2 2 2 1 ...
## $ HalfBath : int 1 0 1 0 1 1 0 1 0 0 ...
## $ BedroomAbvGr : int 3 3 3 3 4 1 3 3 2 2 ...
## $ KitchenAbvGr : int 1 1 1 1 1 1 1 1 2 2 ...
## $ KitchenQual : chr "Gd" "TA" "Gd" "Gd" ...
## $ TotRmsAbvGrd : int 8 6 6 7 9 5 7 7 8 5 ...
## $ Functional : chr "Typ" "Typ" "Typ" "Typ" ...
## $ Fireplaces : int 0 1 1 1 1 0 1 2 2 2 ...
## $ FireplaceQu : chr NA "TA" "TA" "Gd" ...
## $ GarageType : chr "Attchd" "Attchd" "Attchd" "Detchd" ...
## $ GarageYrBlt : int 2003 1976 2001 1998 2000 1993 2004 1973 1931 1939 ...
## $ GarageFinish : chr "RFn" "RFn" "RFn" "Unf" ...
## $ GarageCars : int 2 2 2 3 3 2 2 2 2 1 ...
## $ GarageArea : int 548 460 608 642 836 480 636 484 468 205 ...
## $ GarageQual : chr "TA" "TA" "TA" "TA" ...
## $ GarageCond : chr "TA" "TA" "TA" "TA" ...
## $ PavedDrive : chr "Y" "Y" "Y" "Y" ...
## $ WoodDeckSF : int 0 298 0 0 192 40 255 235 90 0 ...
## $ OpenPorchSF : int 61 0 42 35 84 30 57 204 0 4 ...
## $ EnclosedPorch: int 0 0 0 272 0 0 0 228 205 0 ...
## $ X3SsnPorch : int 0 0 0 0 0 320 0 0 0 0 ...
## $ ScreenPorch : int 0 0 0 0 0 0 0 0 0 0 ...
## $ PoolArea : int 0 0 0 0 0 0 0 0 0 0 ...
## $ PoolQC : chr NA NA NA NA ...
## $ Fence : chr NA NA NA NA ...
## $ MiscFeature : chr NA NA NA NA ...
## $ MiscVal : int 0 0 0 0 0 700 0 350 0 0 ...
## $ MoSold : int 2 5 9 2 12 10 8 11 4 1 ...
## $ YrSold : int 2008 2007 2008 2006 2008 2009 2007 2009 2008 2008 ...
## $ SaleType : chr "WD" "WD" "WD" "WD" ...
## $ SaleCondition: chr "Normal" "Normal" "Normal" "Abnorml" ...
## $ SalePrice : int 208500 181500 223500 140000 250000 143000 307000 200000 129900 118000 ...
a <- t$LotArea
describe(a)
hist(a, breaks=30, main = "Histogram of LotArea")
b <- t$GarageArea
describe(b)
hist(b, breaks=30, main = "Histogram of GarageArea")
c <- t$SalePrice
describe(c)
hist(c, breaks=30, main = "Histogram of SalePrice")
There are 1460 observations in LotArea, GarageArea and SalePrice. The distribution of these observations are all right skewed with few outliers.
#scatterplot matrix for at least two of the independent variables and the dependent variable.
pairs(~ a + b + c,lower.panel=NULL, data = t)
par(mfrow=c(1,2))
plot(a, c, xlab="LotArea", ylab="SalePrice")
plot(b, c, xlab="GarageArea", ylab="SalePrice")
There not much correlation between LotArea and the SalePrice. There is some correlation between GarageArea and the SalePrice.
#correlation matrix
df_cor <- t[c("LotArea", "GarageArea", "SalePrice")]
mat_cor <- cor(df_cor, use = "pairwise.complete.obs")
print(mat_cor)
## LotArea GarageArea SalePrice
## LotArea 1.0000000 0.1804028 0.2638434
## GarageArea 0.1804028 1.0000000 0.6234314
## SalePrice 0.2638434 0.6234314 1.0000000
#t %>% select(LotArea, GarageArea, SalePrice ) %>% cor(use="pairwise.complete.obs") %>% corrplot()
corrplot(mat_cor,method="circle")
The high correlation between GarageArea and the SalePrice is very clear here.
#Test the hypotheses that the correlations between each pairwise set of variables is 0 and provide an 80% confidence interval.
#LotArea and GarageArea
cor.test(a, b, method = 'pearson', conf.level = 0.80)
##
## Pearson's product-moment correlation
##
## data: a and b
## t = 7.0034, df = 1458, p-value = 3.803e-12
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
## 0.1477356 0.2126767
## sample estimates:
## cor
## 0.1804028
#LotArea and SalePrice
cor.test(a, c, method = 'pearson', conf.level = 0.80)
##
## Pearson's product-moment correlation
##
## data: a and c
## t = 10.445, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
## 0.2323391 0.2947946
## sample estimates:
## cor
## 0.2638434
#GarageArea and SalePrice
cor.test(b, c, method = 'pearson', conf.level = 0.80)
##
## Pearson's product-moment correlation
##
## data: b and c
## t = 30.446, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
## 0.6024756 0.6435283
## sample estimates:
## cor
## 0.6234314
Discuss the meaning of your analysis. Would you be worried about familywise error? Why or why not?
The p values are almost 0 for all the above pair-wise comparisons so it is safe to say that the null hypotheses can be rejected. This means that SalePrice has no relation to the other variables.
I would not be worried about the familywise error as the p-values are almost 0 in all the cases.
Invert your correlation matrix from above. (This is known as the precision matrix and contains variance inflation factors on the diagonal.) Multiply the correlation matrix by the precision matrix, and then multiply the precision matrix by the correlation matrix. Conduct LU decomposition on the matrix.
#precision matrix
mat_pre <- solve(mat_cor)
mat_pre
## LotArea GarageArea SalePrice
## LotArea 1.07530074 -0.02799273 -0.2662594
## GarageArea -0.02799273 1.63649778 -1.0128585
## SalePrice -0.26625940 -1.01285847 1.7016986
mat_cor #correlation matrix
## LotArea GarageArea SalePrice
## LotArea 1.0000000 0.1804028 0.2638434
## GarageArea 0.1804028 1.0000000 0.6234314
## SalePrice 0.2638434 0.6234314 1.0000000
round(mat_cor %*% mat_pre) #Multiply the correlation matrix by the precision matrix
## LotArea GarageArea SalePrice
## LotArea 1 0 0
## GarageArea 0 1 0
## SalePrice 0 0 1
round(mat_pre %*% mat_cor) #multiply the precision matrix by the correlation matrix
## LotArea GarageArea SalePrice
## LotArea 1 0 0
## GarageArea 0 1 0
## SalePrice 0 0 1
#LU decomposition on the correlation matrix
cor_lu <- lu.decomposition(mat_cor)
#cor_lu_expand <- expand(cor_lu)
L <- cor_lu$L
U <- cor_lu$U
L #Lower Triangle
## [,1] [,2] [,3]
## [1,] 1.0000000 0.0000000 0
## [2,] 0.1804028 1.0000000 0
## [3,] 0.2638434 0.5952044 1
U #Upper Triangle
## [,1] [,2] [,3]
## [1,] 1 0.1804028 0.2638434
## [2,] 0 0.9674548 0.5758334
## [3,] 0 0.0000000 0.5876481
L %*% U
## [,1] [,2] [,3]
## [1,] 1.0000000 0.1804028 0.2638434
## [2,] 0.1804028 1.0000000 0.6234314
## [3,] 0.2638434 0.6234314 1.0000000
#LU decomposition on the precision matrix
pre_lu <- lu.decomposition(mat_pre)
p_L <- pre_lu$L
p_U <- pre_lu$U
p_L #Lower Triangle
## [,1] [,2] [,3]
## [1,] 1.00000000 0.0000000 0
## [2,] -0.02603247 1.0000000 0
## [3,] -0.24761389 -0.6234314 1
p_U #Upper Triangle
## [,1] [,2] [,3]
## [1,] 1.075301 -0.02799273 -0.2662594
## [2,] 0.000000 1.63576906 -1.0197899
## [3,] 0.000000 0.00000000 1.0000000
p_L %*% p_U
## [,1] [,2] [,3]
## [1,] 1.07530074 -0.02799273 -0.2662594
## [2,] -0.02799273 1.63649778 -1.0128585
## [3,] -0.26625940 -1.01285847 1.7016986
In both correlation and precision matrix the multiplication of L and U matrix resulted in the original correlation and precision matrix.
Many times, it makes sense to fit a closed form distribution to data. Select a variable in the Kaggle.com training dataset that is skewed to the right, shift it so that the minimum value is absolutely above zero if necessary. Then load the MASS package and run fitdistr to fit an exponential probability density function. (See https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/fitdistr.html ). Find the optimal value of \(\lambda\) for this distribution, and then take 1000 samples from this exponential distribution using this value (e.g., rexp(1000, \(\lambda\))). Plot a histogram and compare it with a histogram of your original variable. Using the exponential pdf, find the 5th and 95th percentiles using the cumulative distribution function (CDF). Also generate a 95% confidence interval from the empirical data, assuming normality. Finally, provide the empirical 5th percentile and 95th percentile of the data. Discuss.
#selecting LotArea
la<- t$LotArea
min(la)
## [1] 1300
skim(t$LotArea)
| Name | t$LotArea |
| Number of rows | 1460 |
| Number of columns | 1 |
| _______________________ | |
| Column type frequency: | |
| numeric | 1 |
| ________________________ | |
| Group variables | None |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| data | 0 | 1 | 10516.83 | 9981.26 | 1300 | 7553.5 | 9478.5 | 11601.5 | 215245 | ▇▁▁▁▁ |
#shift it so that the minimum value is absolutely above zero
t_la_shift <- t %>% mutate(LotArea = LotArea - 1300)
skim(t_la_shift$LotArea)
| Name | t_la_shift$LotArea |
| Number of rows | 1460 |
| Number of columns | 1 |
| _______________________ | |
| Column type frequency: | |
| numeric | 1 |
| ________________________ | |
| Group variables | None |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| data | 0 | 1 | 9216.83 | 9981.26 | 0 | 6253.5 | 8178.5 | 10301.5 | 213945 | ▇▁▁▁▁ |
#run fitdistr to fit an exponential probability density function.
la_exp <- fitdistr(t_la_shift$LotArea, densfun = "exponential")
la_exp
## rate
## 1.084972e-04
## (2.839501e-06)
#Find the optimal value of $\lambda$ for this distribution, and then take 1000 samples from this exponential distribution using this value
la_d <- rexp(1000, la_exp$estimate)
#Plot a histogram and compare it with a histogram of your original variable.
par(mfrow=c(1,2))
hist(la_d, freq = FALSE, breaks = 20, main = "Histogram of distribution")
hist(t$LotArea, freq = FALSE, breaks = 20, main = "Histogram of original LotArea")
The original data’s histogram is heavily right skewed whereas the distribution’s histogram is less right skewed.
#5th and 95th percentiles using the cumulative distribution function (CDF)
quantile(la_d, probs = c(0.05, 0.95))
## 5% 95%
## 398.6687 30378.5826
#generate a 95% confidence interval from the empirical data, assuming normality
CI(la_d, ci = 0.95)
## upper mean lower
## 10569.824 9958.153 9346.483
#empirical 5th percentile and 95th percentile of the data
la_o <- sample(t$LotArea, 1000, replace=TRUE, prob=NULL)
quantile(la_o, c(.05, .95))
## 5% 95%
## 3735.00 17500.15
Build some type of multiple regression model and submit your model to the competition board. Provide your complete model summary and results with analysis. Report your Kaggle.com user name and score.
train <- read.csv("https://raw.githubusercontent.com/irene908/DATA605/main/train.csv") #train data(loaded again)
test <- read.csv("https://raw.githubusercontent.com/irene908/DATA605/main/test.csv") #test data
#filter out the required attributes from the train set
t <- subset(train, select=c(MSSubClass,MSZoning,LotArea,LotShape,LotConfig,Neighborhood,BldgType,HouseStyle,OverallQual,OverallCond,YearBuilt,YearRemodAdd,RoofStyle,MasVnrType,MasVnrArea,ExterQual,BsmtQual,BsmtCond,BsmtExposure,TotalBsmtSF,Heating,HeatingQC,Electrical,X1stFlrSF,GrLivArea,TotRmsAbvGrd,Functional,GarageCars,GarageArea,PavedDrive,WoodDeckSF,OpenPorchSF,MiscVal,MoSold,YrSold,SaleType,SaleCondition,SalePrice))
#handle missing data
t<- na.omit(t)
Multiple Regression
t.lm <- lm(SalePrice ~ MSSubClass + MSZoning + LotArea + LotShape + LotConfig + Neighborhood + BldgType + HouseStyle + OverallQual + OverallCond + YearBuilt + YearRemodAdd + RoofStyle + + MasVnrType + MasVnrArea + ExterQual + BsmtQual + BsmtCond + BsmtExposure + TotalBsmtSF + Heating + HeatingQC + Electrical + X1stFlrSF + GrLivArea + TotRmsAbvGrd + Functional + GarageCars + GarageArea + PavedDrive + WoodDeckSF + OpenPorchSF + MiscVal + MoSold + YrSold + SaleType + SaleCondition, data = t)
summary(t.lm)
##
## Call:
## lm(formula = SalePrice ~ MSSubClass + MSZoning + LotArea + LotShape +
## LotConfig + Neighborhood + BldgType + HouseStyle + OverallQual +
## OverallCond + YearBuilt + YearRemodAdd + RoofStyle + +MasVnrType +
## MasVnrArea + ExterQual + BsmtQual + BsmtCond + BsmtExposure +
## TotalBsmtSF + Heating + HeatingQC + Electrical + X1stFlrSF +
## GrLivArea + TotRmsAbvGrd + Functional + GarageCars + GarageArea +
## PavedDrive + WoodDeckSF + OpenPorchSF + MiscVal + MoSold +
## YrSold + SaleType + SaleCondition, data = t)
##
## Residuals:
## Min 1Q Median 3Q Max
## -358632 -12522 63 11080 243508
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.367e+05 1.316e+06 -0.180 0.857302
## MSSubClass -1.733e+02 1.029e+02 -1.684 0.092509 .
## MSZoningFV 3.661e+04 1.495e+04 2.449 0.014440 *
## MSZoningRH 2.544e+04 1.492e+04 1.706 0.088316 .
## MSZoningRL 2.746e+04 1.259e+04 2.180 0.029442 *
## MSZoningRM 2.279e+04 1.181e+04 1.929 0.053929 .
## LotArea 4.521e-01 1.029e-01 4.395 1.20e-05 ***
## LotShapeIR2 6.859e+03 5.286e+03 1.298 0.194646
## LotShapeIR3 -3.753e+04 1.064e+04 -3.527 0.000435 ***
## LotShapeReg 1.257e+03 2.019e+03 0.623 0.533561
## LotConfigCulDSac 9.205e+03 4.022e+03 2.288 0.022270 *
## LotConfigFR2 -1.142e+04 5.087e+03 -2.246 0.024881 *
## LotConfigFR3 -1.357e+04 1.561e+04 -0.869 0.384935
## LotConfigInside 1.088e+03 2.191e+03 0.497 0.619542
## NeighborhoodBlueste 1.290e+04 2.371e+04 0.544 0.586569
## NeighborhoodBrDale 1.826e+04 1.352e+04 1.350 0.177218
## NeighborhoodBrkSide 3.364e+03 1.148e+04 0.293 0.769538
## NeighborhoodClearCr 3.012e+02 1.134e+04 0.027 0.978821
## NeighborhoodCollgCr 2.405e+02 8.984e+03 0.027 0.978649
## NeighborhoodCrawfor 2.403e+04 1.041e+04 2.308 0.021156 *
## NeighborhoodEdwards -1.653e+04 9.915e+03 -1.667 0.095768 .
## NeighborhoodGilbert -3.055e+03 9.645e+03 -0.317 0.751501
## NeighborhoodIDOTRR 3.493e+02 1.325e+04 0.026 0.978973
## NeighborhoodMeadowV 9.938e+03 1.277e+04 0.778 0.436593
## NeighborhoodMitchel -9.850e+03 1.010e+04 -0.975 0.329708
## NeighborhoodNAmes -5.740e+03 9.545e+03 -0.601 0.547689
## NeighborhoodNoRidge 5.380e+04 1.031e+04 5.217 2.12e-07 ***
## NeighborhoodNPkVill 1.812e+04 1.333e+04 1.360 0.174205
## NeighborhoodNridgHt 3.889e+04 9.243e+03 4.208 2.76e-05 ***
## NeighborhoodNWAmes -5.128e+03 9.737e+03 -0.527 0.598525
## NeighborhoodOldTown -1.046e+04 1.189e+04 -0.880 0.379137
## NeighborhoodSawyer -7.115e+03 1.002e+04 -0.710 0.477841
## NeighborhoodSawyerW 3.679e+03 9.558e+03 0.385 0.700332
## NeighborhoodSomerst 1.135e+04 1.116e+04 1.016 0.309618
## NeighborhoodStoneBr 5.847e+04 1.012e+04 5.779 9.40e-09 ***
## NeighborhoodSWISU -9.543e+03 1.186e+04 -0.805 0.421253
## NeighborhoodTimber -4.176e+02 1.002e+04 -0.042 0.966772
## NeighborhoodVeenker 2.191e+04 1.276e+04 1.716 0.086314 .
## BldgType2fmCon 1.124e+04 1.513e+04 0.743 0.457785
## BldgTypeDuplex -1.531e+04 7.506e+03 -2.040 0.041569 *
## BldgTypeTwnhs -1.148e+04 1.230e+04 -0.933 0.350932
## BldgTypeTwnhsE -6.284e+03 1.109e+04 -0.566 0.571173
## HouseStyle1.5Unf 1.254e+04 9.541e+03 1.314 0.189034
## HouseStyle1Story 1.649e+04 5.203e+03 3.168 0.001569 **
## HouseStyle2.5Fin -1.996e+04 1.282e+04 -1.556 0.119951
## HouseStyle2.5Unf -7.447e+03 1.051e+04 -0.708 0.478903
## HouseStyle2Story -6.002e+03 4.150e+03 -1.446 0.148289
## HouseStyleSFoyer 2.042e+04 7.867e+03 2.596 0.009529 **
## HouseStyleSLvl 1.358e+04 6.620e+03 2.052 0.040357 *
## OverallQual 9.721e+03 1.205e+03 8.065 1.66e-15 ***
## OverallCond 4.854e+03 1.028e+03 4.721 2.60e-06 ***
## YearBuilt 2.330e+02 8.052e+01 2.894 0.003866 **
## YearRemodAdd 1.015e+02 6.641e+01 1.528 0.126760
## RoofStyleGable 2.627e+03 1.073e+04 0.245 0.806638
## RoofStyleGambrel 6.152e+03 1.426e+04 0.431 0.666204
## RoofStyleHip 7.059e+03 1.089e+04 0.648 0.516840
## RoofStyleMansard 2.958e+03 1.591e+04 0.186 0.852583
## RoofStyleShed 1.283e+04 2.501e+04 0.513 0.608166
## MasVnrTypeBrkFace 1.038e+04 8.580e+03 1.210 0.226360
## MasVnrTypeNone 1.365e+04 8.636e+03 1.581 0.114160
## MasVnrTypeStone 1.460e+04 9.068e+03 1.610 0.107734
## MasVnrArea 8.214e+00 7.201e+00 1.141 0.254211
## ExterQualFa -3.604e+04 1.237e+04 -2.915 0.003623 **
## ExterQualGd -2.403e+04 5.635e+03 -4.265 2.15e-05 ***
## ExterQualTA -2.771e+04 6.263e+03 -4.424 1.05e-05 ***
## BsmtQualFa -2.928e+04 7.960e+03 -3.678 0.000245 ***
## BsmtQualGd -3.085e+04 4.061e+03 -7.596 5.81e-14 ***
## BsmtQualTA -3.036e+04 4.967e+03 -6.114 1.29e-09 ***
## BsmtCondGd 3.768e+03 6.604e+03 0.571 0.568340
## BsmtCondPo 3.821e+04 3.432e+04 1.113 0.265710
## BsmtCondTA 7.609e+03 5.229e+03 1.455 0.145829
## BsmtExposureGd 1.997e+04 3.688e+03 5.416 7.27e-08 ***
## BsmtExposureMn -3.770e+03 3.795e+03 -0.994 0.320586
## BsmtExposureNo -9.457e+03 2.741e+03 -3.450 0.000578 ***
## TotalBsmtSF 2.915e+00 5.323e+00 0.548 0.583958
## HeatingGasW 6.823e+03 8.094e+03 0.843 0.399379
## HeatingGrav 2.148e+03 1.342e+04 0.160 0.872895
## HeatingOthW -3.641e+04 2.301e+04 -1.582 0.113843
## HeatingQCFa -1.376e+03 5.839e+03 -0.236 0.813785
## HeatingQCGd -4.301e+03 2.589e+03 -1.661 0.096880 .
## HeatingQCPo -3.263e+04 3.251e+04 -1.004 0.315678
## HeatingQCTA -3.597e+03 2.480e+03 -1.451 0.147129
## ElectricalFuseF -5.048e+01 7.770e+03 -0.006 0.994818
## ElectricalFuseP 4.554e+03 2.307e+04 0.197 0.843532
## ElectricalMix -1.938e+04 4.852e+04 -0.399 0.689675
## ElectricalSBrkr 6.017e+02 3.705e+03 0.162 0.871014
## X1stFlrSF -1.779e+01 8.317e+00 -2.139 0.032654 *
## GrLivArea 6.950e+01 6.082e+00 11.426 < 2e-16 ***
## TotRmsAbvGrd 1.061e+03 1.061e+03 1.001 0.317193
## FunctionalMaj2 -1.591e+04 1.812e+04 -0.878 0.380126
## FunctionalMin1 -2.121e+03 1.106e+04 -0.192 0.847901
## FunctionalMin2 1.907e+03 1.096e+04 0.174 0.861860
## FunctionalMod 4.067e+03 1.312e+04 0.310 0.756603
## FunctionalSev -3.993e+04 3.455e+04 -1.156 0.247914
## FunctionalTyp 1.196e+04 9.501e+03 1.259 0.208200
## GarageCars 1.195e+04 2.673e+03 4.469 8.56e-06 ***
## GarageArea -1.178e+01 9.091e+00 -1.296 0.195128
## PavedDriveP 2.319e+02 6.930e+03 0.033 0.973312
## PavedDriveY 5.521e+03 4.319e+03 1.278 0.201446
## WoodDeckSF 1.463e+01 7.109e+00 2.058 0.039753 *
## OpenPorchSF -5.521e-02 1.402e+01 -0.004 0.996859
## MiscVal -9.006e-01 1.736e+00 -0.519 0.603950
## MoSold -2.819e+02 3.121e+02 -0.903 0.366601
## YrSold -2.295e+02 6.507e+02 -0.353 0.724327
## SaleTypeCon 3.694e+04 2.262e+04 1.633 0.102717
## SaleTypeConLD 1.579e+04 1.274e+04 1.239 0.215567
## SaleTypeConLI 9.399e+03 1.457e+04 0.645 0.519033
## SaleTypeConLw 8.001e+03 1.524e+04 0.525 0.599611
## SaleTypeCWD 7.400e+03 1.637e+04 0.452 0.651328
## SaleTypeNew 2.554e+04 1.939e+04 1.317 0.188020
## SaleTypeOth 1.674e+04 1.853e+04 0.903 0.366553
## SaleTypeWD 2.864e+03 5.289e+03 0.541 0.588258
## SaleConditionAdjLand 2.410e+04 1.932e+04 1.247 0.212628
## SaleConditionAlloca 1.680e+04 1.206e+04 1.393 0.163977
## SaleConditionFamily -4.631e+03 7.727e+03 -0.599 0.549074
## SaleConditionNormal 5.316e+03 3.583e+03 1.484 0.138091
## SaleConditionPartial -1.140e+04 1.867e+04 -0.611 0.541395
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 29830 on 1296 degrees of freedom
## Multiple R-squared: 0.8701, Adjusted R-squared: 0.8585
## F-statistic: 74.85 on 116 and 1296 DF, p-value: < 2.2e-16
The R sqaured value is 0.8701 and the p value is almost 0. This suggests that the model is able to include 87% of the data.
#filter out the required attributes from the test set
test.filter <- subset(test, select=c(MSSubClass,MSZoning,LotArea,LotShape,LotConfig,Neighborhood,BldgType,HouseStyle,OverallQual,OverallCond,YearBuilt,YearRemodAdd,RoofStyle,MasVnrType,MasVnrArea,ExterQual,BsmtQual,BsmtCond,BsmtExposure,TotalBsmtSF,Heating,HeatingQC,Electrical,X1stFlrSF,GrLivArea,TotRmsAbvGrd,Functional,GarageCars,GarageArea,PavedDrive,WoodDeckSF,OpenPorchSF,MiscVal,MoSold,YrSold,SaleType,SaleCondition))
#handle missing data
test.filter <- na.omit(test.filter)
pred <- predict(t.lm, test.filter)
#summary of prediction
summary(pred)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 17955 129952 163046 180759 215478 536496
#summary of train set SalePrice
summary(t$SalePrice)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 34900 131500 164700 182579 215000 755000
From the summary statistics the 1st Qu,Median,Mean and 3rd Qu looks good.
#adding id to the predicted data
df_final <- as.data.frame(cbind(test$Id, pred))
colnames(df_final) = c("Id", "SalePrice")
head(df_final)
#Histograms of predicted and Train data
par(mfrow=c(1,2))
hist(df_final$SalePrice, breaks=20, main = 'Histogram of Prediction')
hist(t$SalePrice, breaks=20, main = 'Histogram of Train')
#writing to csv file for kaggle submission
write.csv(df_final, file="IJacob_FinalProject_Kaggle.csv", row.names = FALSE)
Kaggle Submission
Username: Irene Jacob 908
Score: 0.52008
knitr::include_graphics("C://kaggle_1.JPG")
knitr::include_graphics("C://kaggle_2.JPG")