library(readxl)
Data <- FLCAS_TALLY_Data <- read_excel("FLCAS-TALLY-Data.xlsx")
## New names:
## * `` -> ...40
## * `` -> ...41
Data
summary(Data$Grades)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 34.00 73.00 83.00 80.92 91.00 99.00
Gequivalent= Data$Gequivalent
Gequivalent.freq = table(Gequivalent)
Gequivalent.relfreq = Gequivalent.freq
Gequivalent.freq
## Gequivalent
## Excellent Failed Fair Fair Good Good Poor Very Good Very Poor
## 120 2 7 19 20 4 19 4
Gequivalent.relfreq = Gequivalent.freq / nrow(Data)
cbind(Gequivalent.relfreq)
## Gequivalent.relfreq
## Excellent 0.61538462
## Failed 0.01025641
## Fair 0.03589744
## Fair Good 0.09743590
## Good 0.10256410
## Poor 0.02051282
## Very Good 0.09743590
## Very Poor 0.02051282
library(plyr)
ddply(Data, .(Gequivalent), summarize, Grades=mean(Grades))
library(plyr)
ddply(Data, .(AnxietyInter), summarize, Grades=mean(Grades))
aggregate(Data[, 3:38], list(Data$School), mean)
## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
## returning NA
aggregate(Data[, 5:38], list(Data$School), sd)
Anxiety= Data$AnxietyInter
Anxiety.freq = table(Anxiety)
Anxiety.relfreq = Anxiety.freq
Anxiety.freq
## Anxiety
## High anxiety Low anxiety Moderate anxiety
## 54 4 137
Anxiety.relfreq = Anxiety.freq / nrow(Data)
cbind(Anxiety.relfreq)
## Anxiety.relfreq
## High anxiety 0.27692308
## Low anxiety 0.02051282
## Moderate anxiety 0.70256410
res.aov2 <- aov(Data$AnxietyLevel ~ Data$AnxietyInter)
summary(res.aov2)
## Df Sum Sq Mean Sq F value Pr(>F)
## Data$AnxietyInter 2 22.51 11.255 182.4 <2e-16 ***
## Residuals 192 11.85 0.062
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model.tables(res.aov2, type="means", se = TRUE)
## Design is unbalanced - use se.contrast() for se's
## Tables of means
## Grand mean
##
## 3.276768
##
## Data$AnxietyInter
## High anxiety Low anxiety Moderate anxiety
## 3.803 2.409 3.095
## rep 54.000 4.000 137.000
TukeyHSD(res.aov2)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Data$AnxietyLevel ~ Data$AnxietyInter)
##
## $`Data$AnxietyInter`
## diff lwr upr p adj
## Low anxiety-High anxiety -1.3939394 -1.6979531 -1.0899257 0e+00
## Moderate anxiety-High anxiety -0.7083610 -0.8026293 -0.6140927 0e+00
## Moderate anxiety-Low anxiety 0.6855784 0.3879836 0.9831732 5e-07