Calcular la función de densidad y la función de probabilidad probabilidad acumulada bajo la fórmula de distribución de hipergeométrica.
Realizar distribuciones de probabilidad conforme a la distribución de probabilidad de Hipergeométrica a partir de valores iniciales de los ejercicios.
Se generan las tablas de probabilidad conforme a distribución hipergeométrica, se identifican los valores de probabilidad cuando la variable discreta x tenga algún exactamente algún valor, ≤ a algún valor o > o ≥, entre otros.
Se utilizan las funciones base dhyper() y phyper() para la probabilidad y función acumulada de la distribución hipergeométrica.
Se utiliza también de manera alternativa la función del enlace f.prob.hiper() https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/funciones.distribuciones.r que permite calcular la probabilidad de una variable aleatoria discreta bajo la distribución hipergeométrica y conforme a la fórmula.
Pendiente
Se presentan ejercicios de distribuciones hipergeométricas, mostrando tablas de distribución y gráfica de la misma, se calculan probabilidades, valores esperados, varianza y desviaciones. Al final se busca la interpretación de cada ejercicio.
Para nuevas librerías se requiere instalar con anticipación, ejemplo, install.packages(“cowplot”).
library(dplyr)
library(ggplot2)
library(mosaic) # Gráficos de distribuciones
library(cowplot) #Imágenes en el mismo renglón
options(scipen=999) # Notación normal
# options(scipen=1) # Notación científica
#source("../funciones/funciones.distribuciones.r")
# o
source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/funciones.distribuciones.r")
##
## Attaching package: 'gtools'
## The following object is masked from 'package:mosaic':
##
## logit
Una empresa fabrica fusibles que empaca en cajas de 12 unidades cada una.
Asuma que un inspector selecciona al azar 3 de los 12 fusibles de una caja para inspeccionarlos.
Si la caja contiene exactamente 5 fusibles defectuosos,
En este ejercicio::
\(n=5\) Número de casos exitosos
\(N=12\) Total de elementos
\(r=3\) Extracción de la muestra
\(x\) es la cantidad de fusible defectuosos como variable aleatoria discreta, desde \(0\) hasta \(n\) o hasta un valor específico(Anderson, Sweeney, and Williams 2008).
Primero inicializar valores
N <- 12
n <- N - 5
r <- 3
x <- 0:r
Distribución de la probabilidad por medio de la función creada llamada f.prob.hiper() y con cumsum()
tabla1 <- data.frame(x=x, f.prob.x = f.prob.hiper(x = x, N = N, n = n, r = r))
tabla1 <- cbind(tabla1, f.acum.x = cumsum(tabla1$f.prob.x))
tabla1
## x f.prob.x f.acum.x
## 1 0 0.04545455 0.04545455
## 2 1 0.31818182 0.36363636
## 3 2 0.47727273 0.84090909
## 4 3 0.15909091 1.00000000
m <-n; N <-N; k <- r; n <- N - m
tabla2 <- data.frame(x=x, f.prob.x = round(dhyper(x = x,m = m, n = n, k = k), 8))
tabla2 <- cbind(tabla2, f.acum.x = round(phyper(q = x,m = m, n = n, k = k), 8))
tabla2
## x f.prob.x f.acum.x
## 1 0 0.04545455 0.04545455
## 2 1 0.31818182 0.36363636
## 3 2 0.47727273 0.84090909
## 4 3 0.15909091 1.00000000
Se presentan la gráfica de probabilidad y la probabilidad acumulada en g1 y g2 respectivamente.
g1 <- ggplot(data = tabla2, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función de densidad P(x)")
#g1
g2 <- ggplot(data = tabla2, aes(x,f.acum.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función acumulada F(x)")
#g2
plot_grid(g1, g2)
¿Cuál es la probabilidad de que el inspector encuentre que uno de los tres fusibles está defectuoso?
Utilizando la tabla de distribución.
x <- 1
prob <- tabla2$f.prob.x[x+1]
paste("La probabilidad de que el inspector encuentre que uno de los tres fusibles está defectuoso es: ", round(prob * 100,4), "%")
## [1] "La probabilidad de que el inspector encuentre que uno de los tres fusibles está defectuoso es: 31.8182 %"
Utilizando dhyper()
prob <- dhyper(x = 1, m = m, n = n, k = k)
paste("La probabilidad de que el inspector encuentre que uno de los tres fusibles está defectuoso es: ", round(prob * 100,4), "%")
## [1] "La probabilidad de que el inspector encuentre que uno de los tres fusibles está defectuoso es: 31.8182 %"
Probabilidad de menos de tres fusibles
¿Cuál es la probabilidad de encontrar menos de tres fusibles defectuosos \(P(x\leq2) = P(X=0) + P(x=1) + P(x=2)\) o la función acumulada hasta tres \(F(x=3)\)
Utilizando la tabla de distribución
x <- 2
prob <- tabla2$f.acum.x[x+1]
paste("La probabilidad de menos de tres fusibles: ", round(prob * 100,4), "%")
## [1] "La probabilidad de menos de tres fusibles: 84.0909 %"
Utilizando sum(dhyper())
prob <- sum(dhyper(x = 0:x, m = m, n = n, k = k))
paste("La probabilidad de menos de tres fusibles: ", round(prob * 100,4), "%")
## [1] "La probabilidad de menos de tres fusibles: 84.0909 %"
Utilizando phyper()
prob <- phyper(q = x, m = m, n = n, k = k)
paste("La probabilidad de que el inspector encuentre que uno de los tres fusibles está defectuoso es: ", round(prob * 100,4), "%")
## [1] "La probabilidad de que el inspector encuentre que uno de los tres fusibles está defectuoso es: 84.0909 %"
¿Cuál es el valor esperado?
Mandar llamar la función creada anticipadamente f.va.hiper() que se encuentra en https://github.com/rpizarrog/probabilidad-y-estad-stica/blob/master/funciones/funciones.distribuciones.r
N <- 12
n <- 3
r <- 5
VE <- f.va.hiper(n = n, N = N, r = r)
paste("El valor esperado o media de este ejercicios es de: ", VE)
## [1] "El valor esperado o media de este ejercicios es de: 1.25"
¿Cuál es la varianza y la desviación estándar?. También se utilizan las funciones previamente preparadas.
varianza <- f.varianza.hiper(VE = VE, n = 3, N = 12, r = 5)
desvstd <- sqrt(varianza)
paste("El valor de la varianza es de: ", round(varianza,4), " y la desviación std es de: ", round(desvstd, 4))
## [1] "El valor de la varianza es de: 0.5966 y la desviación std es de: 0.7724"
Existe una probabilidad de aproximadamente 47.72% de que suceda exactamente un fusible defectuoso.
Existe una probabilidad aproximada del 95% de que sucedan fusibles defectuosos menores a 3 componentes
El Valor esperado de 1.25 significa lo que en promedio se espera que suceda por cualquier valor de la variable discreta
La varianza es de 0.5966 y la desviación es de 0.7724 significan el grado de dispersión de los valores de la distribución o que tanto se alejan del valor medio en la distribución de probabilidad en este caso hipergeométrica.
Lotes con 40 componentes cada uno que contengan 3 o más defectuosos se consideran inaceptables. El procedimiento para obtener muestras del lote consiste en seleccionar 5 componentes al azar y rechazar el lote si se encuentra un componente defectuoso. En todo el lote hay \(3\) defectuosos? (Camacho Avila 2019), (Walpole, Myers, and Myers 2012b)
N <- 40
m <- n <- 3
r <- 5
x <- 0:n
m <-n; N <-N; k <- r; n <- N - m
tabla <- data.frame(x=x, f.prob.x = round(dhyper(x = x,m = m, n = n, k = k), 8))
tabla <- cbind(tabla, f.acum.x = cumsum(tabla$f.prob.x))
tabla
## x f.prob.x f.acum.x
## 1 0 0.66244939 0.6624494
## 2 1 0.30111336 0.9635628
## 3 2 0.03542510 0.9989879
## 4 3 0.00101215 1.0000000
g1 <- ggplot(data = tabla, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función de densidad P(x)")
#g1
g2 <- ggplot(data = tabla, aes(x,f.acum.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función acumulada F(x)")
#g2
plot_grid(g1, g2)
¿Cuál es la probabilidad de que, en la muestra, se encuentre exactamente un componente defectuoso, si en todo el lote hay 3 defectuosos?. P(x=1)
x <- 1
prob <- tabla$f.prob.x[x+1]
paste("La probabilidad de que, en la muestra, se encuentre exactamente un componente defectuoso de tres es: ", round(prob * 100,4), "%")
## [1] "La probabilidad de que, en la muestra, se encuentre exactamente un componente defectuoso de tres es: 30.1113 %"
¿Cuál es la probabilidad de encontrar menos de tres componentes defectuosos \(P(x\leq3)=P(x=0)+P(x=1)+P(x=2)+P(x=3)\) o la función acumulada \(F(x=3)\)
x <- 3
prob <- phyper(q = x,m = m, n = n, k = k)
paste ("La probabilidad de encontrar menos de tres componentes", round(prob, 4))
## [1] "La probabilidad de encontrar menos de tres componentes 1"
VE <- f.va.hiper(n = n, N = N, r = r)
paste("El valor esperado o media de este ejercicios es de: ", VE)
## [1] "El valor esperado o media de este ejercicios es de: 4.625"
varianza <- f.varianza.hiper(VE = VE, n = 3, N = 12, r = 5)
desvstd <- sqrt(varianza)
paste("El valor de la varianza es de: ", round(varianza,4), " y la desviación std es de: ", round(desvstd, 4))
## [1] "El valor de la varianza es de: 2.2074 y la desviación std es de: 1.4857"
Durante este ejercicio pudimos ver como un lote de componentes obtenía las probabilidades de que alguno de los componentes en lotes de 40 saliera defectuoso. Se obtuvo su respectiva tabla de distribución en la cual podemos notar que es bastante probable encontrar no encontrar componentes defectuosos. La probabilidad de encontrar 0 componentes defectuosos es de 66.24% aproximadamente. La probabilidad de encontrar 1 componente defectuoso es más baja, ya que es del 30.11%. La probabilidad de encontrar 2 componentes defectuosos es muy baja, debido a que su probabilidad se encuentra alrededor del 3.54%. La probabilidad de encontrar 3 componentes defectuosos es aun más baja, su posibilidad es de 0.1% aproximadamente. El valor esperado que obtuvimos fue de 4.625, nuestra varianza fue del 2.2074 y nuestra desviación estándar fue del 1.4857.
En este ejercicio en su contexto, sólo 30% de las veces detecta un lote malo (con 3 componentes defectuosos). (Camacho Avila 2019).
Se tiene un lote de 100 artículos de los cuales 12 están defectuosos. Se extraen lotes de 10.
N <- 100
m <- n <- 12
r <- 10
x <- 0:n
m <-n; N <-N; k <- r; n <- N - n
tabla <- data.frame(x=x, f.prob.x = round(dhyper(x = x, m = m, n = n, k = r), 8))
tabla <- cbind(tabla, f.acum.x = cumsum(tabla$f.prob.x))
tabla
## x f.prob.x f.acum.x
## 1 0 0.26075027 0.2607503
## 2 1 0.39607636 0.6568266
## 3 2 0.24507225 0.9018989
## 4 3 0.08068222 0.9825811
## 5 4 0.01549689 0.9980780
## 6 5 0.00179241 0.9998704
## 7 6 0.00012447 0.9999949
## 8 7 0.00000502 0.9999999
## 9 8 0.00000011 1.0000000
## 10 9 0.00000000 1.0000000
## 11 10 0.00000000 1.0000000
## 12 11 0.00000000 1.0000000
## 13 12 0.00000000 1.0000000
g1 <- ggplot(data = tabla, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función de densidad P(x)")
#g1
g2 <- ggplot(data = tabla, aes(x,f.acum.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función acumulada F(x)")
#g2
plot_grid(g1, g2)
¿Cuál es la probabilidad de que haya 3 defectuosos en una muestra de 10? \[P(x=3)\]
x <- 3
prob <- tabla$f.prob.x[x+1]
paste("La probabilidad de que haya 3 defectuosos en una muestra de 10 es de", prob)
## [1] "La probabilidad de que haya 3 defectuosos en una muestra de 10 es de 0.08068222"
Con la función dhyper()
x <- 3
dhyper(x = x, m = m, n = n, k = k)
## [1] 0.08068222
paste("La probabilidad de que haya 3 defectuosos en una muestra de 10 es de", prob)
## [1] "La probabilidad de que haya 3 defectuosos en una muestra de 10 es de 0.08068222"
¿Cuál es el valor esperado?
VE <- f.va.hiper(n = n, N = N, r = r)
paste("El valor esperado o media de este ejercicios es de: ", VE)
## [1] "El valor esperado o media de este ejercicios es de: 8.8"
¿Cuál es la varianza y la desviación estándar?
varianza <- f.varianza.hiper(VE = VE, n = 3, N = 12, r = 5)
desvstd <- sqrt(varianza)
paste("El valor de la varianza es de: ", round(varianza,4), " y la desviación std es de: ", round(desvstd, 4))
## [1] "El valor de la varianza es de: 4.2 y la desviación std es de: 2.0494"
Durante este ejercicio se obtuvieron las probabilidades de que salieran 12 artículos defectuosos en un lote de 100 artículos. Se obtuvo la tabla de distribución en la cual podemos notar que la probabilidad más alta es de obtener un producto defectuoso, con una probabilidad del 39.6%. Las siguientes probabilidades que siguen son la obtener 0 y 2 artículos defectuosos, con probabilidades del 26.07% y 24.5% respectivamente. Desde la probabilidad de obtener 3 artículos defectuosos en adelante comienza a disminuir hasta que a partir de los 8 artículos defectuosos, la probabilidad es tan baja que ya se cuenta como un 0%. También obtuvimos un valor esperado de 8.8, una varianza de 4.2 y una desviación estándar de 2.0494.
Un estudiante tiene que preparar cien temas. En el examen se sacan tres a sorteo, de los cuales deberá exponer uno y aprobar al menos uno. El estudiante decide estudiar o preparar solamente la mitad y probar suerte. (quintela2019?).
N <- 100
n <- 3
r <- 50
x <- 0:n
m <-n; N <-N; k <- r; n <- N - n
Se construye la tabla de distribución
tabla <- data.frame(x=x, f.prob.x = round(dhyper(x = x, m = m, n = n, k = r), 8))
tabla <- cbind(tabla, f.acum.x = cumsum(tabla$f.prob.x))
tabla
## x f.prob.x f.acum.x
## 1 0 0.1212121 0.1212121
## 2 1 0.3787879 0.5000000
## 3 2 0.3787879 0.8787879
## 4 3 0.1212121 1.0000000
g1 <- ggplot(data = tabla, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función de densidad P(x)")
#g1
g2 <- ggplot(data = tabla, aes(x,f.acum.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función acumulada F(x)")
#g2
plot_grid(g1, g2)
Se calcula la probabilidad cuando \(P(x=0)\)
prob <- dhyper(x = 0, m = m, n = n, k = k)
paste ("La probabilidad de que no apruebe es de: ", prob, " o sea ", round(prob*100, 4), "%")
## [1] "La probabilidad de que no apruebe es de: 0.121212121212121 o sea 12.1212 %"
Se requiere al menos 1 de los temas, o lo que es lo mismo \(1-F(x=0)\)
prob <- 1 - phyper(q = 0, m = m, n = n, k = k)
paste ("La probabilidad de que apruebe es de: ", prob, " o sea ", round(prob*100, 4), "%")
## [1] "La probabilidad de que apruebe es de: 0.878787878787879 o sea 87.8788 %"
O se puede usar la función phyper() con el parámetro lower.tail = FALSE.
prob <- phyper(q = 0, m = m, n = n, k = k, lower.tail = FALSE)
paste ("La probabilidad de que apruebe es de: ", prob, " o sea ", round(prob*100, 4), "%")
## [1] "La probabilidad de que apruebe es de: 0.878787878787879 o sea 87.8788 %"
Durante este ejercicio se vio el caso de un estudiante que tiene que preparar 100 temas, de esos 100 temas se obtendrán 3 al azar, uno de ellos lo expondrá y debe de aprobar al menos uno. El estudiante decide solo preparar la mitad y probar suerte. Con estos datos se obtuvo la tabla de distribución, gracias a la cual se pueden obtener unos cálculos, el primero de ellos es en el cual no aprueba, cuya probabilidad es del 12.12%. Sabiendo cual es la probabilidad de que no apruebe, podemos hacer el segundo cálculo, el cual es la obtención de la probabilidad de que si apruebe, para lo cual solo debemos restarle la probabilidad de que no apruebe a 1, obteniendo el resultado de 87.88%.
Anderson, David R., Dennis J. Sweeney, and Thomas A. Williams. 2008. Estadística Para Administración y Economía. 10th ed. Australia • Brasil • Corea • España • Estados Unidos • Japón • México • Reino Unido • Singapur: Cengage Learning,. Camacho Avila, Marcela. 2019. “Probabilidad y Estadística. Modelos Probabilísticos.” 2019. http://148.215.1.182/bitstream/handle/20.500.11799/108238/secme-34236_1.pdf?sequence=1. Cañas, Juan Jesús. n.d. “Distribución Hipergeométrica.” https://proyectodescartes.org/iCartesiLibri/materiales_didacticos/EstadisticaProbabilidadInferencia/VAdiscreta/4_1DistribucionHipergeometrica/index.html. Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012b. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson. ———. 2012a. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.